Synlett 2023; 34(04): 327-331
DOI: 10.1055/a-1984-0686
account

Total Synthesis of the Caged Diterpenoid Atropurpuran

Jing Xu
a   Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
b   Shenzhen Bay Laboratory, Shenzhen 518132, P. R. of China
› Author Affiliations
This research was funded by NSFC (21971104 and 22271136), ­Education Department of Guangdong Province, Key research projects in colleges and universities in Guangdong Province (2021ZDZX2035), Shenzhen Bay Laboratory (SZBL2019062801006), Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), Shenzhen Nobel Prize Scientists Laboratory Project (C17783101), Guangdong Innovative Program (2019BT02Y335), Innovative Team of Universities in Guangdong Province (2020KCXTD016) and Shenzhen Science and Technology Innovation Committee (ZDSYS20190902093215877, JCYJ20190809140611364).


Abstract

In this account, we wish to share some stories behind our 13-step synthesis of the caged complex diterpenoid atropurpuran. Although our approach might appear to have proceeded smoothly, the unraveling of the core-construction puzzle and late-stage decorations was full of drama.

1 Introduction

2 Total Synthesis of Atropurpuran

3 Conclusion



Publication History

Received: 02 November 2022

Accepted after revision: 22 November 2022

Accepted Manuscript online:
22 November 2022

Article published online:
19 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Tang P, Chen Q.-H, Wang F.-P. Tetrahedron Lett. 2009; 50: 460
    • 2a Wang F.-P, Liang X.-T. Alkaloids (San Diego, CA U. S.) 2002; 59: 1
    • 2b Wang F.-P, Chen Q.-H, Liu X.-Y. Nat. Prod. Rep. 2010; 27: 529
    • 2c Cherney EC, Baran PS. Isr. J. Chem. 2011; 51: 391
    • 2d Hamlin AM, Kisunzu JK, Sarpong R. Org. Biomol. Chem. 2014; 12: 1846
    • 2e Liu X.-Y, Qin Y. Asian J. Org. Chem. 2015; 4: 1010
    • 2f Zhu G, Liu R, Liu B. Synthesis 2015; 47: 2691
    • 2g Liu X.-Y, Qin Y. Nat. Prod. Rep. 2017; 34: 1044
    • 2h Liu X.-Y, Ke B.-W, Qin Y, Wang F.-P. Alkaloids (San Diego, CA U. S.) 2022; 87: 1
    • 2i Liu X.-Y, Wang F.-P, Qin Y. Acc. Chem. Res. 2021; 54: 22
    • 2j McCowen SV, Doering NA, Sarpong R. Chem. Sci. 2020; 11: 7538
  • 3 Gong J, Chen H, Liu X.-Y, Wang Z.-X, Nie W, Qin Y. Nat. Commun. 2016; 7: 12183
  • 4 Xie S, Chen G, Yan H, Hou J, He Y, Zhao T, Xu J. J. Am. Chem. Soc. 2019; 141: 3435
  • 5 Suzuki T, Koyama T, Nakanishi K, Kobayashi S, Tanino K. J. Org. Chem. 2020; 85: 10125
  • 6 Nie W, Gong J, Chen Z, Liu J, Tian D, Song H, Liu X.-Y, Qin Y. J. Am. Chem. Soc. 2019; 141: 9712
  • 7 Zhou S, Xia K, Leng X, Li A. J. Am. Chem. Soc. 2019; 141: 13718
  • 8 Owens KR, McCowen SV, Blackford KA, Ueno S, Hirooka Y, Weber M, Sarpong R. J. Am. Chem. Soc. 2019; 141: 13713
  • 9 Huck CJ, Boyko YD, Sarlah D. Nat. Prod. Rep. 2022; 58 DOI: 10.1039/d2np00042c.
  • 10 Suzuki T, Sasaki A, Egashira N, Kobayashi S. Angew. Chem. Int. Ed. 2011; 50: 9177
  • 11 Lin S, Song C.-X, Cai G.-X, Wang W.-H, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 12901
  • 12 Hethcox JC, Shockley SE, Stoltz BM. Angew. Chem. Int. Ed. 2016; 55: 16092
    • 13a Fernández González D, Brand JP, Waser J. Chem. Eur. J. 2010; 16: 9457
    • 13b Long R, Huang J, Shao W, Liu S, Lan Y, Gong J, Yang Z. Nat. Commun. 2014; 5: 5707
  • 14 Abelman MM, Overman LE, Tran VD. J. Am. Chem. Soc. 1990; 112: 6959

    • The step count here is based on the literature definition [A reaction step is defined as one in which a substrate is converted into a product in a single reaction flask (irrespective of the number of transformations) without intermediate workup or purification], see:
    • 15a Kawamura S, Chu H, Felding J, Baran PS. Nature 2016; 532: 90
    • 15b Chu H, Smith JM, Felding J, Baran PS. ACS Cent. Sci. 2017; 3: 47
    • 16a Hoffmann RW. Synthesis 2006; 3531
    • 16b Young IS, Baran PS. Nat. Chem. 2009; 1: 193
    • 16c Saicic RN. Tetrahedron 2014; 70: 8183
    • 16d Protecting-Group-Free Organic Synthesis: Improving Economy and Efficiency. Fernandes RA. Wiley-VCH; Weinheim: 2018
    • 16e Hui C, Chen F, Pu F, Xu J. Nat. Rev. Chem. 2019; 3: 85

      For our other syntheses of caged natural products, see:
    • 17a Guo L.-D, Chen Y, Xu J. Acc. Chem. Res. 2020; 53: 2726
    • 17b Chen Y, Hu J, Guo L.-D, Zhong W, Ning C, Xu J. Angew. Chem. Int. Ed. 2019; 58: 7390
    • 17c Guo L.-D, Hou J, Tu W, Zhang Y, Zhang Y, Chen L, Xu J. J. Am. Chem. Soc. 2019; 141: 11713
    • 17d Guo L.-D, Hu J, Zhang Y, Tu W, Zhang Y, Pu F, Xu J. J. Am. Chem. Soc. 2019; 141: 13043
    • 17e Guo L.-D, Zhang Y, Hu J, Ning C, Fu H, Chen Y, Xu J. Nat. Commun. 2020; 11: 3538
    • 17f Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. J. Am. Chem. Soc. 2022; 144: 16042
    • 17g Xie S, Ning C, Yu Q, Hou J, Xu J. Chin. J. Chem. 2021; 39: 137
    • 17h Zhao N, Yin S, Xie S, Yan H, Ren P, Chen G, Chen F, Xu J. Angew. Chem. Int. Ed. 2018; 57: 3386
    • 17i Hu J, Guo L.-D, Chen W, Jiang Y, Pu F, Ning C, Xu J. Org. Lett. 2022; 24: 7416