Hamostaseologie 2016; 36(03): 161-166
DOI: 10.5482/HAMO-14-11-0056
Review
Schattauer GmbH

Ein genomweiter Ansatz bei Thrombozyten-und Gerinnungsstörungen

A whole genome approach to platelet and bleeding disorders
Michael Laffan
1   Faculty of Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom
,
the BRIDGE Bleeding and Platelet Disorders Consortium › Author Affiliations
Further Information

Publication History

received: 03 November 2014

accepted in revised form: 13 January 2015

Publication Date:
20 December 2017 (online)

Zusammenfassung

Die Sequenzierung von hunderttausenden menschlichen Exomen und Gesamtgenomen bietet einen immer genaueren und vollständigeren Katalog menschlicher Genvarianten. Die ersten Studien zum Verständnis von Thrombozytenstörungen anhand von genomweiten Daten wurden als genomweite Assoziationsstudien durchgeführt, in denen Loci identifiziert wurden, die mit Variationen der Blutzellparameter assoziiert sind. In diesen Studien wurden Norm-varianten genutzt, um die entsprechenden genetische Variation zu finden. Als nächstes wollten wir die genetische Grundlage von Gerinnungsstörungen untersuchen, die einen Schlüssel für neue Gene liefern könnte, welche Thrombozyten- und Gerinnungsfunktionen steuern. Das BRIDGE-Konsortium (www.bridgestudy. org) wird vom NIHR finanziert und bringt 13 Genforschungsprojekte zu seltenen Krankheiten zusammen. Ziel dieser Projekte ist die Erforschung bislang unterdiagnostizierter seltener Erbkrankheiten und die Identifizierung der zugrunde liegenden Mutationen. Wir verwendeten eine Cluster-Analyse, basierend auf der Human Phenotype Ontology, kombiniert mit Next-Generation Sequenzierungstechniken, um Patienten mit ähnlichen Phänotypen, die vermutlich aus den gleichen Gendefekten hervorgehen, leichter zu identifizieren. Vorläufige Ergebnisse bestätigen dieses Vorgehen in Clustern und ergaben auch eine Reihe neuer Gene, die für die normale und die pathologische Thrombozytenphysiologie wichtig sind.

Summary

The sequencing of hundreds of thousands of human exomes and hundreds of thousands of whole genomes is providing a progressively accurate and complete catalogue of human genetic variation. The initial studies to use genome wide data to help understand platelet disorders performed genome wide association studies to identify loci linked to variations in blood cell parameters. These studies used normal variation to find corresponding genetic variation. We next wished to investigate the genetic basis of bleeding disorders which may also provide a key to novel genes regulating platelet and haemostatic functions.

The BRIDGE consortium (www.bridgestudy. org) is funded by the NIHR and brings together 13 rare disease gene discovery projects. The aim of these projects is to investigate as yet undiagnosed rare inherited diseases and identify the underlying mutational basis. We have used a cluster analysis based on the Human Phenotype Ontology in combination with next generation sequencing techniques to help identify patients with similar phenotypes which we hypothesise will arise from defects in the same gene. Preliminary results validate the clustering approach and have also resulted in a number of novel genes important for normal and pathogenic platelet physiology.

 
  • References

  • 1 Genomes Project C, Abecasis GR, Altshuler D, Auton A. et al. A map of human genome variation from population-scale sequencing.. Nature 2010; 467: 1061-1073. Nature 2011; 473: 544.
  • 2 Kaye J, Hurles M, Griffin H. et al. Managing clinically significant findings in research: the UK10K example.. Eur J Hum Genet 2014; 22: 1100-1104.
  • 3 Moran N. 10,000 rare-disease genomes sequenced.. Nat Biotech 2014; 32: 7.
  • 4 Meisinger C, Prokisch H, Gieger C. et al. A genome-wide association study identifies three loci associated with mean platelet volume.. Am J Hum Genet 2009; 84: 66-71.
  • 5 Soranzo N, Spector TD, Mangino M. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium.. Nat Genet 2009; 41: 1182-1190.
  • 6 Hayward CP, Pai M, Liu Y. et al. Diagnostic utility of light transmission platelet aggregometry: results from a prospective study of individuals referred for bleeding disorder assessments.. J Thromb Haemost 2009; 7: 676-84.
  • 7 Quiroga T, Goycoolea M, Panes O. et al. High prevalence of bleeders of unknown cause among patients with inherited mucocutaneous bleeding.. A prospective study of 280 patients and 299 controls. Haematologica 2007; 92: 357-365.
  • 8 Organisation WH. [cited 2014 September]. www.who.int/classifications/icd/en.
  • 9 Organisation. IHTSD.. [cited 2014 September]. www.ihtsdo.org/snomed-ct.
  • 10 Information.. NCfB. OMIM: Online Mendelian inheritance in man.. [cited 2014 September]. www.ncbi.nlm.nih.gov/omim.
  • 11 Rath A, Olry A, Dhombres F. et al. Representation of rare diseases in health information systems: the Orphanet approach to serve a wide range of end users.. Hum Mutat 2012; 33: 803-808.
  • 12 Chen L, Kostadima M, Martens JHA. et al. Transcriptional diversity during lineage commitment of human blood progenitors.. Science 2014; 345 251033 (2014); DOI: 10.1126/science.1251033.
  • 13 Saeed S, Quintin J, Kerstens HHD. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity.. Science 2014; 345: 251086 (2014); DOI: 10.1126/science.1251086.
  • 14 Albers CA, Cvejic A, Favier R. et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome.. Nat Genet 2011; 43: 735-737.
  • 15 Gunay-Aygun M, Falik-Zaccai TC, Vilboux T. et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet alpha-granules.. Nat Genet 2011; 43: 732-734.
  • 16 Kahr WH, Hinckley J, Li L. et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome.. Nat Genet 2011; 43: 738-740.
  • 17 Albers CA, Newbury-Ecob R, Ouwehand WH, Ghevaert C. New insights into the genetic basis of TAR (thrombocytopenia-absent radii) syndrome.. Curr Opin Genet Dev 2013; 23: 316-323.
  • 18 Albers CA, Paul DS, Schulze H, Freson K, Stephens JC, Smethurst PA. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome.. Nat Genet 2012; 44: 435-439 S1–2.
  • 19 Deppermann C, Nurden P, Nurden AT. et al. The Nbeal2(-/-) mouse as a model for the gray platelet syndrome.. Rare Dis 2013; 1: e26561.
  • 20 Guerrero JA, Bennett C, van der Weyden L. et al. Gray Platelet Syndrome: Pro-inflammatory megakaryocytes and -granule loss cause myelofibrosis and confer resistance to cancer metastasis in mice.. Blood 2014; 124: 3624-3635.
  • 21 Kahr WH, Lo RW, Li L. et al. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.. Blood 2013; 122: 3349-3358.
  • 22 Cvejic A, Haer-Wigman L, Stephens JC. et al. SMIM1 underlies the Vel blood group and influences red blood cell traits.. Nat Genet 2013; 45: 542-545.