Hamostaseologie 2013; 33(04): 259-268
DOI: 10.5482/HAMO-13-07-0034
Review
Schattauer GmbH

Atherothrombotic risk in obesity

Atherothrombotisches Risiko bei Adipositas
L. Badimon
1   Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau and IIB-Santpau
2   Cátedra de Investigación Cardiovascular, (UAB-HSCSP-Fundación Jesús Serra), Barcelona
,
R. Hernández Vera
1   Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau and IIB-Santpau
2   Cátedra de Investigación Cardiovascular, (UAB-HSCSP-Fundación Jesús Serra), Barcelona
,
G. Vilahur
1   Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau and IIB-Santpau
2   Cátedra de Investigación Cardiovascular, (UAB-HSCSP-Fundación Jesús Serra), Barcelona
› Author Affiliations
This work was supported by PNS2010–16549 (to LB) and PNS2012–40208 (to GV) from the Spanish Ministry of Science. We thank Fundacion Jesus Serra-Fundación Investigación Cardiovascular (FIC), Barcelona, for their continuous support. G.V. is recipient of a grant from the Spanish Ministry of Science and Innovation (RyC-2009–5495; MICINN).
Further Information

Publication History

received: 01 July 2013

accepted in revised form: 02 September 2013

Publication Date:
28 December 2017 (online)

Summary

A link between obesity and coronary artery disease development has been repeatedly proposed, possibly in part due to the development of a proinflammatory and prothrombotic state in obese subjects. Adipocytes secrete numerous hormones and cytokines (adipokines) which influence gene expression and cell functions in endothelial cells, arterial smooth muscle cells, and monocytes/macrophages favouring the development of an atherosclerotic vulnerable plaque. Moreover, the release of such biologically active molecules also promotes endothelial function impairment, disturbs the haemostatic and fibrinolytic systems, and produces alterations in platelet function affecting the initiation, progression, and stabilization of thrombus formation upon atherosclerotic plaque rupture.

In this review we will discuss the patho-physiological mechanisms by which obesity contributes to increase atherothrombosis paying special attention to its effects over thrombosis.

Zusammenfassung

Wiederholt wurde ein Zusammenhang zwischen Adipositas und koronarer Herzkrankheit postuliert, der teilweise auf die Entwicklung proinflammatorischer und prothrombotischer Zustände bei adipösen Patienten zurückzuführen sein könnte. Adipozyten sezernieren zahlreiche Hormone und Zytokine (Adipokine), die die Genexpression und Zellfunktionen in Endothelzellen, glatten Muskelzellen der Arterien sowie Monozyten/Makrophagen beeinflussen, so dass die Entwicklung von instabiler atherosklerotischer Plaque begünstigt wird. Außerdem fördert die Freisetzung solcher biologisch aktiver Moleküle eine endotheliale Dysfunktion, sie beeinträchtigt hämostatische und fibrinolytische Systeme und führt zu Veränderungen der Thrombozytenfunktion mit Auswirkungen auf Einsetzen, Progression und Stabilisierung der Thrombusbildung nach atherosklerotischer Plaqueruptur.

In diesem Review werden pathophysiologischen Mechanismen diskutiert, durch die Adipositas zur Förderung von Atherothrombose beiträgt. Dabei finden Auswirkungen jenseits der Thrombose besondere Beachtung.

 
  • References

  • 1 World Health Organization. Obesity and overweight. 2011 www.who.int/mediacentre/fact sheets/fs311/en/index.html
  • 2 Kelly T, Yang W, Chen CS. et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008; 32: 1431-1437.
  • 3 Fontaine KR, Redden DT, Wang C. et al. Years of life lost due to obesity. JAMA 2003; 289: 187-193.
  • 4 Poirier P, Giles TD, Bray GA. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Circulation 2006; 113: 898-918.
  • 5 Alberti KG, Eckel RH, Grundy SM. et al. Harmonizing the metabolic syndrome. Circulation 2009; 120: 1640-1645.
  • 6 Mottillo S, Filion KB, Genest J. et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 2010; 56: 1113-1132.
  • 7 Onat A. Metabolic syndrome: nature, therapeutic solutions and options. Expert Opin Pharmacother 2011; 12: 1887-1900.
  • 8 Badimon L, Martinez-Gonzalez J, Llorente-Cortes V. et al. Cell biology and lipoproteins in atherosclerosis. Curr Mol Med 2006; 06: 439-456.
  • 9 Badimon L, Storey RF, Vilahur G. Update on lipids, inflammation and atherothrombosis. Thromb Haemost 2011; 105 (Suppl. 01) S34-S42.
  • 10 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317-325.
  • 11 Ibanez B, Vilahur G, Badimon JJ. Plaque progression and regression in atherothrombosis. J Thromb Haemost 2007; 05 (Suppl. 01) 292-299.
  • 12 Badimon L, Badimon JJ, Vilahur G. et al. Pathogenesis of the acute coronary syndromes and therapeutic implications. Pathophysiol Haemost Thromb 2002; 32: 225-231.
  • 13 Badimon L, Vilahur G. Coronary atherothrombotic disease: progress in antiplatelet therapy. Rev Esp Cardiol 2008; 61: 501-513.
  • 14 Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 2006; 74: 443-477.
  • 15 Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008; 29: 2959-2971.
  • 16 Gustafson B, Hammarstedt A, Andersson CX, Smith U. Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 2276-2283.
  • 17 Rega-Kaun G, Kaun C, Wojta J. More than a simple storage organ: Adipose tissue as a source of adipokines involved in cardiovascular disease. Thromb Haemost. 2013 110. doi:10.1160/TH13-03-0212.
  • 18 Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175-184.
  • 19 De Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 2008; 54: 945-955.
  • 20 Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am 2008; 37: 635-646.
  • 21 Pilz S, Marz W. Free fatty acids as a cardiovascular risk factor. Clin Chem Lab Med 2008; 46: 429-434.
  • 22 Gregor MF, Hotamisligil GS. Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 2007; 48: 1905-1914.
  • 23 Goralski KB, Sinal CJ. Type 2 diabetes and cardiovascular disease: getting to the fat of the matter. Can J Physiol Pharmacol 2007; 85: 113-132.
  • 24 Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 2010; 314: 1-16.
  • 25 Alessi MC, Lijnen HR, Bastelica D, Juhan-Vague I. Adipose tissue and atherothrombosis. Pathophysiol Haemost Thromb 2004; 33: 290-297.
  • 26 Cusi K, Maezono K, Osman A. et al. Insulin resistance differentially affects the PI 3-kinase-and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105: 311-320.
  • 27 Kato H, Kashiwagi H, Shiraga M. et al. Adiponectin acts as an endogenous antithrombotic factor. Arterioscler Thromb Vasc Biol 2006; 26: 224-230.
  • 28 Mattu HS, Randeva HS. The role of adipokines in cardiovascular disease. J Endocrinol 2013; 216: T17-T36.
  • 29 Enriori PJ, Evans AE, Sinnayah P, Cowley MA. Leptin resistance and obesity. Obesity (Silver Spring) 2006; 14 (Suppl. 05) 254S-8S.
  • 30 Beltowski J. Leptin and atherosclerosis. Atherosclerosis 2006; 189: 47-60.
  • 31 Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005; 96: 939-949.
  • 32 Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am 2008; 37: 753-768.
  • 33 Chavey C, Mari B, Monthouel MN. et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 2003; 278: 11888-11896.
  • 34 Maquoi E, Munaut C, Colige A. et al. Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 2002; 51: 1093-1101.
  • 35 Hopps E, Caimi G. Matrix metalloproteinases in metabolic syndrome. Eur J Intern Med 2012; 23: 99-104.
  • 36 Back M, Ketelhuth DF, Agewall S. Matrix metalloproteinases in atherothrombosis. Prog Cardiovasc Dis 2010; 52: 410-428.
  • 37 Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 2012; 56: 232-244.
  • 38 Johnson JL, George SJ, Newby AC, Jackson CL. Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci USA 2005; 102: 15575-15580.
  • 39 Laxton RC, Hu Y, Duchene J. et al. A role of matrix metalloproteinase-8 in atherosclerosis. Circ Res 2009; 105: 921-929.
  • 40 Eckel RH, Barouch WW, Ershow AG. Report of the National Heart, Lung, and Blood Institute National Institute of Diabetes and Digestive and Kidney Diseases Working Group on the pathophysiology of obesity-associated cardiovascular disease. Circulation 2002; 105: 2923-2928.
  • 41 Despres JP. Cardiovascular disease under the influence of excess visceral fat. Crit Pathw Cardiol 2007; 06: 51-59.
  • 42 Kopelman PG. Obesity as a medical problem. Nature 2000; 404: 635-643.
  • 43 Wolk R, Berger P, Lennon RJ. et al. Body mass index: a risk factor for unstable angina and myocardial infarction in patients with angiographically confirmed coronary artery disease. Circulation 2003; 108: 2206-2211.
  • 44 Michiels C. Endothelial cell functions. J Cell Physiol 2003; 196: 430-443.
  • 45 Badimon L, Vilahur G, Padro T. Lipoproteins, platelets and atherothrombosis. Rev Esp Cardiol 2009; 62: 1161-1178.
  • 46 Steinberg HO, Chaker H, Leaming R. et al. Obesity/ insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996; 97: 2601-2610.
  • 47 Tounian P, Aggoun Y, Dubern B. et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet 2001; 358: 1400-1404.
  • 48 Benjamin EJ, Larson MG, Keyes MJ. et al. Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. Circulation 2004; 109: 613-619.
  • 49 Pulerwitz T, Grahame-Clarke C, Rodriguez CJ. et al. Association of increased body mass index and impaired endothelial function among Hispanic women. Am J Cardiol 2006; 97: 68-70.
  • 50 Otani H. Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antioxid Redox Signal 2011; 15: 1911-1926.
  • 51 Van de Werf F, Ardissino D, Betriu A. et al. Management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2003; 24: 28-66.
  • 52 Hamdy O, Ledbury S, Mullooly C. et al. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care 2003; 26: 2119-2125.
  • 53 Sciacqua A, Candigliota M, Ceravolo R. et al. Weight loss in combination with physical activity improves endothelial dysfunction in human obesity. Diabetes Care 2003; 26: 1673-1678.
  • 54 Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity. Nutr Metab Cardiovasc Dis 2009; 19: 440-449.
  • 55 Targher G, Zoppini G, Moghetti P, Day CP. Disorders of coagulation and hemostasis in abdominal obesity: emerging role of fatty liver. Semin Thromb Hemost 2010; 36: 41-48.
  • 56 Basili S, Pacini G, Guagnano MT. et al. Insulin resistance as a determinant of platelet activation in obese women. J Am Coll Cardiol 2006; 48: 2531-2538.
  • 57 Davi G, Guagnano MT, Ciabattoni G. et al. Platelet activation in obese women: role of inflammation and oxidant stress. JAMA 2002; 288: 2008-2014.
  • 58 Anfossi G, Russo I, Trovati M. Platelet resistance to the anti-aggregating agents in the insulin resistant states. Curr Diabetes Rev 2006; 02: 409-430.
  • 59 Anfossi G, Mularoni EM, Burzacca S. et al. Platelet resistance to nitrates in obesity and obese NIDDM, and normal platelet sensitivity to both insulin and nitrates in lean NIDDM. Diabetes Care 1998; 21: 121-126.
  • 60 Anfossi G, Russo I, Massucco P. et al. Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: possible role in platelet hyperactivation in obesity. Eur J Clin Invest 2004; 34: 482-489.
  • 61 Russo I, Traversa M, Bonomo K. et al. In central obesity, weight loss restores platelet sensitivity to nitric oxide and prostacyclin. Obesity (Silver Spring) 2010; 18: 788-797.
  • 62 De Pergola G, Pannacciulli N, Coviello M. et al. sPselectin plasma levels in obesity: association with insulin resistance and related metabolic and prothrombotic factors. Nutr Metab Cardiovasc Dis 2008; 18: 227-232.
  • 63 Angelico F, Alessandri C, Ferro D. et al. Enhanced soluble CD40L in patients with the metabolic syndrome: Relationship with in vivo thrombin generation. Diabetologia 2006; 49: 1169-1174.
  • 64 Natal C, Restituto P, Inigo C. et al. The proinflammatory mediator CD40 ligand is increased in the metabolic syndrome and modulated by adiponectin. J Clin Endocrinol Metab 2008; 93: 2319-2327.
  • 65 Coban E, Ozdogan M, Yazicioglu G, Akcit F. The mean platelet volume in patients with obesity. Int J Clin Pract 2005; 59: 981-982.
  • 66 Greisenegger S, Endler G, Hsieh K. et al. Is elevated mean platelet volume associated with a worse outcome in patients with acute ischemic cerebrovascular events?. Stroke 2004; 35: 1688-1691.
  • 67 Bavbek N, Kargili A, Kaftan O. et al. Elevated concentrations of soluble adhesion molecules and large platelets in diabetic patients: are they markers of vascular disease and diabetic nephropathy?. Clin Appl Thromb Hemost 2007; 13: 391-397.
  • 68 Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation?. Curr Pharm Des 2011; 17: 47-58.
  • 69 Ishibashi T, Kimura H, Uchida T. et al. Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci USA 1989; 86: 5953-5957.
  • 70 Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest 2005; 115: 3339-3347.
  • 71 Van der Loo B, Martin JF. A role for changes in platelet production in the cause of acute coronary syndromes. Arterioscler Thromb Vasc Biol 1999; 19: 672-679.
  • 72 Hernández RVera, Vilahur G, Ferrer-Lorente R. et al. Platelets derived from the bone marrow of diabetic animals show dysregulated endoplasmic reticulum stress proteins that contribute to increased thrombosis. Arterioscler Thromb Vasc Biol 2012; 32: 2141-2148.
  • 73 Hernández RVera, Vilahur G, Badimon L. Obesity with insulin resistance increase thrombosis in wild-type and bone marrow-transplanted Zucker fatty rats. Thromb Haemost 2013; 109: 319-327.
  • 74 Visser M, Bouter LM, McQuillan GM. et al. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999; 282: 2131-2135.
  • 75 Molins B, Pena E, de la RTorre, Badimon L. Monomeric C-reactive protein is prothrombotic and dissociates from circulating pentameric C-reactive protein on adhered activated platelets under flow. Cardiovasc Res 2011; 92: 328-337.
  • 76 Molins B, Pena E, Vilahur G. et al. C-reactive protein isoforms differ in their effects on thrombus growth. Arterioscler Thromb Vasc Biol 2008; 28: 2239-2246.
  • 77 Corsonello A, Perticone F, Malara A. et al. Leptindependent platelet aggregation in healthy, over-weight and obese subjects. Int J Obes Relat Metab Disord 2003; 27: 566-573.
  • 78 Murakami T, Horigome H, Tanaka K. et al. Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb Res 2007; 119: 45-53.
  • 79 Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med 2008; 359: 938-949.
  • 80 Meade TW, Ruddock V, Stirling Y. et al. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet 1993; 342: 1076-1079.
  • 81 Samad F, Pandey M, de Waard V, Loskutoff D. Elevated PAI-1 and tissue factor gene expression in obese mice: a possible mechanism for the increased risk for cardiovascular disease associated with obesity. Fibrinol Proteol 1997; 11: 17.
  • 82 Kopp CW, Kopp HP, Steiner S. et al. Weight loss reduces tissue factor in morbidly obese patients. Obes Res 2003; 11: 950-956.
  • 83 Napoleone EADIS, Amore C. et al. Leptin induces tissue factor expression in human peripheral blood mononuclear cells: a possible link between obesity and cardiovascular risk?. J Thromb Haemost 2007; 05: 1462-1468.
  • 84 Folsom AR, Conlan MG, Davis CE, Wu KK. Relations between hemostasis variables and cardiovascular risk factors in middle-aged adults. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Ann Epidemiol 1992; 02: 481-494.
  • 85 Nagai N, Hoylaerts MF, Cleuren AC. et al. Obesity promotes injury induced femoral artery thrombosis in mice. Thromb Res 2008; 122: 549-555.
  • 86 Fontana L, Eagon JC, Trujillo ME. et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007; 56: 1010-1013.
  • 87 Faber DR, de Groot PG, Visseren FL. Role of adipose tissue in haemostasis, coagulation and fibrinolysis. Obes Rev 2009; 10: 554-563.
  • 88 Lijnen H, Collen D. Molecular and cellular basis of fibrinolysis. In: Hoffman RBE, Shattil SJ, Furie B. et al. (eds). Elsevier: Philadelphia; 2005
  • 89 Rissanen P, Vahtera E, Krusius T. et al. Weight change and blood coagulability and fibrinolysis in healthy obese women. Int J Obes Relat Metab Disord 2001; 25: 212-218.
  • 90 Janand-Delenne B, Chagnaud C, Raccah D. et al. Visceral fat as a main determinant of plasminogen activator inhibitor 1 level in women. Int J Obes Relat Metab Disord 1998; 22: 312-317.
  • 91 Koistinen HA, Dusserre E, Ebeling P. et al. Subcutaneous adipose tissue expression of plasminogen activator inhibitor-1 (PAI-1) in nondiabetic and Type 2 diabetic subjects. Diabetes Metab Res Rev 2000; 16: 364-369.
  • 92 Birgel M, Gottschling-Zeller H, Rohrig K, Hauner H. Role of cytokines in the regulation of plasminogen activator inhibitor-1 expression and secretion in newly differentiated subcutaneous human adipocytes. Arterioscler Thromb Vasc Biol 2000; 20: 1682-1687.
  • 93 Gottschling-Zeller H, Birgel M, Rohrig K, Hauner H. Effect of tumor necrosis factor alpha and transforming growth factor beta 1 on plasminogen activator inhibitor-1 secretion from subcutaneous and omental human fat cells in suspension culture. Metabolism 2000; 49: 666-671.
  • 94 Rega G, Kaun C, Weiss TW. et al. Inflammatory cytokines interleukin-6 and oncostatin m induce plasminogen activator inhibitor-1 in human adipose tissue. Circulation 2005; 111: 1938-1945.
  • 95 Mavri A, Alessi MC, Bastelica D. et al. Subcutaneous abdominal, but not femoral fat expression of plasminogen activator inhibitor-1 (PAI-1) is related to plasma PAI-1 levels and insulin resistance and decreases after weight loss. Diabetologia 2001; 44: 2025-2031.
  • 96 Estelles A, Dalmau J, Falco C. et al. Plasma PAI-1 levels in obese children effect of weight loss and influence of PAI-1 promoter 4G/5G genotype. Thromb Haemost 2001; 86: 647-652.
  • 97 Sudi KM, Gallistl S, Trobinger M. et al. The influence of weight loss on fibrinolytic and metabolic parameters in obese children and adolescents. J Pediatr Endocrinol Metab 2001; 14: 85-94.
  • 98 Aubert H, Frere C, Aillaud MF. et al. Weak and non-independent association between plasma TAFI antigen levels and the insulin resistance syndrome. J Thromb Haemost 2003; 01: 791-797.
  • 99 Hori Y, Gabazza EC, Yano Y. et al. Insulin resistance is associated with increased circulating level of thrombin-activatable fibrinolysis inhibitor in type 2 diabetic patients. J Clin Endocrinol Metab 2002; 87: 660-665.
  • 100 Ageno W, Becattini C, Brighton T. et al. Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation 2008; 117: 93-102.
  • 101 Di Minno G, Mannucci PM, Tufano A. et al. The first ambulatory screening on thromboembolism: a multicentre, cross-sectional, observational study on risk factors for venous thromboembolism. J Thromb Haemost 2005; 03: 1459-1466.
  • 102 Samama MM. An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients: the Sirius study. Arch Intern Med 2000; 160: 3415-3420.
  • 103 Allman-Farinelli MA, Chey T, Bauman AE. et al. Age, period and birth cohort effects on prevalence of overweight and obesity in Australian adults from 1990 to 2000. Eur J Clin Nutr 2008; 62: 898-907.
  • 104 Eichinger S, Hron G, Bialonczyk C. et al. Overweight, obesity, and the risk of recurrent venous thromboembolism. Arch Intern Med 2008; 168: 1678-1683.
  • 105 Allman-Farinelli MA. Obesity and venous thrombosis: a review. Semin Thromb Hemost 2011; 37: 903-907.
  • 106 Steffen LM, Cushman M, Peacock JM. et al. Metabolic syndrome and risk of venous thromboembolism: Longitudinal Investigation of Thromboembolism Etiology. J Thromb Haemost 2009; 07: 746-751.
  • 107 Aguilera CM, Ramirez-Tortosa MC, Mesa MD, Gil A. Protective effect of monounsaturated and polyunsaturated fatty acids on the development of cardiovascular disease. Nutr Hosp 2001; 16: 78-91.