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Summary
Objective: More than 70% of hospitals in the United States have electronic health records (EHRs). 
Clinical decision support (CDS) presents clinicians with electronic alerts during the course of patient 
care; however, alert fatigue can influence a provider’s response to any EHR alert. The primary goal 
was to evaluate the effects of alert burden on user response to the alerts.
Methods: We performed a retrospective study of medication alerts over a 24-month period 
(1/2013–12/2014) in a large pediatric academic medical center. The institutional review board ap-
proved this study. The primary outcome measure was alert salience, a measure of whether or not 
the prescriber took any corrective action on the order that generated an alert. We estimated the 
ideal number of alerts to maximize salience. Salience rates were examined for providers at each 
training level, by day of week, and time of day through logistic regressions. 
Results: While salience never exceeded 38%, 49 alerts/day were associated with maximal salience 
in our dataset. The time of day an order was placed was associated with alert salience (maximal sa-
lience 2am). The day of the week was also associated with alert salience (maximal salience on 
Wednesday). Provider role did not have an impact on salience.
Conclusion: Alert burden plays a role in influencing provider response to medication alerts. An in-
creased number of alerts a provider saw during a one-day period did not directly lead to decreased 
response to alerts. Given the multiple factors influencing the response to alerts, efforts focused 
solely on burden are not likely to be effective.
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1. Background And Significance
More than 70% of hospitals in the United States (US) have electronic health records (EHRs) [1], and 
US government incentives have encouraged additional adoption including clinical decision support 
(CDS) for providers [2–5]. During a typical day, clinicians caring for hospitalized patients are pres-
ented with numerous electronic alerts intended to provide CDS. These alerts may be simple [6] or 
complex reminder systems [7] and are generated from the data contained in the EHR; they are im-
plemented to promote safety and improve patient care [8–13].

The use of CDS increases as more hospitals and physician offices install EHRs [14]. CDS is fre-
quently implemented as an active alert and alerting systems have demonstrated improvement in 
clinical care [11, 13, 15]. Alerts can improve practitioner performance [16] and existing evidence 
supports integration with a computerized system [17]. CDS can span across the entire gamut of pa-
tient care from dose or route button reminders to medication alerts. Unfortunately user behavior, in 
which most users override the majority of alerts [18], suggests that the preponderance of electronic 
CDS alerts fail to inform decision-making or action. Alerts can be overridden for a myriad of rea-
sons. Without direct observation and questioning of user actions, it is not clear if alerts are over-
ridden because they are considered extraneous, too frequent, or are ineffective through design, im-
plementation, or lack of fit with workflow [19, 20].

Medication ordering is accomplished through Computerized Provider Order Entry (CPOE). 
EHR systems with CPOE and effective CDS have shown potential for reducing the risk of drug-re-
lated harm [21–27]. CPOE generally incorporates one or more proprietary databases of drug dosing 
rules, as a guide and tool for physicians to reference. With so many rules, and a low specificity of 
these rules to a particular population, the result is an inundation of alerts being produced by the 
CPOE.

Medication alerts appear during order entry and include notifications of drug-drug interactions, 
medication allergies, dose warnings, drug-disease, and duplicate therapy orders. Pediatric drug dos-
ing is more complex than in adult patients due to factors such as weight-based dosing, varying drug 
metabolism and physiology during development, and the increased off-label use of medications in 
children [28–32]. Decreasing inappropriate medication alerts can improve adherence to the remain-
ing alerts [33]. Despite the importance of these alerts for patient care, they are frequently ignored 
[34, 35]; this high rate of ignoring alerts is often attributed to alert fatigue and is commonly reported 
by clinician prescribers [19, 36].

Data analysis can be used to automatically identify inappropriate alerts by examining the techni-
cal and clinical validity of CDS through techniques such as outlier or anomaly detection and pattern 
recognition [18]. At our institution up to 92% of the 28,000 visible medication alerts generated 
monthly did not result in change or annulment of the order, despite the fact that only 8% of medi-
cation orders generate visible alerts [18]. However, no optimal response to alert rate exists in the lit-
erature [37]. The alert burden on a provider can be defined as the number of alerts that are viewed 
during medication ordering. We measured alert salience, the extent to which the provider takes cor-
rective actions in response to the presented alert. It is a measure that demonstrates the user actually 
noticed and heeded the alert and did not simply and reflexively override it. Alert salience is one 
readily available measure that can help improve our understanding of alert fatigue and can be calcu-
lated using data available in the EHR. We hypothesize that the alert salience [18] decreases as the 
number of alerts a user sees increases.

2. Objectives
Our objective was to retrospectively evaluate the effects of alert burden on provider salience. The 
secondary goals were to evaluate the effects of day of the week, time of day, and the provider role to 
the alert salience. We hypothesized that increased alert burden will lead to decreased salience.
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3. Methods 

3.1 Study design, setting, and participants
We performed a retrospective study of medication alerts over a 24-month period from January 2013 
to December 2014 in our 628-bed, urban children’s hospital (Cincinnati Children’s Hospital Medical 
Center) with approximately 1.2 million patient encounters annually. We have a fully-integrated EHR 
(Epic®, Verona, Wisconsin) implemented in stages from 2007 to 2010, and all medication orders are 
electronic.

The medication decision support rules for high-risk and commonly prescribed medications at 
our institution were customized – all other medication rules were used as supplied by the third party 
vendor. Some alerts (low-risk drug-drug interactions, duplicate therapy warnings) are filtered and 
not shown to all users. As a safety measure, all alerts regardless of risk are displayed for the pharma-
cists.

The medication alerts are pop-up, interruptive alerts that fire after order entry and before the 
user enters their credentials to sign the orders. Each medication alert provides a reason (e.g., dose, 
duplicate therapy, drug-drug interaction) and lists out the associated order. Additional information 
is offered on why the alert fired through hyperlinks in the warning text. A user can remove or dis-
continue individual orders. Users can select either a drop-down reason for each individual alert, se-
lect a button that immediately overrides all warnings, select “override and accept” for all orders or 
select “cancel” and return to order entry. Filtered warnings are viewable by selecting a check-box to 
cascade the additional warnings. All alerts generated during the study period were included in the 
dataset and all providers who received a visible alert were included in the analysis. The study was ap-
proved by the institutional review board.

3.2 Outcome measures
The primary outcome measure was alert salience. Salience is a measure of user response to an alert 
and is defined as the number of alerts that led to order cancelation or modification divided by the 
total number of alerts presented to a user [18]. A cancelled order is when the user cancels the order-
ing process, presumptively to change the order in response to the alert or some other stimuli. This 
action allows the provider to go back into order entry to modify the medication order. Higher sa-
lience is associated with users modifying or cancelling orders in response to alerts and lower salience 
is associated with users overriding alert prompts the majority of the time. Independent variables, 
which were examined in statistical models as covariates, included provider role, categorized as resi-
dent, fellow, attending or nurse; day of week; time of day, a continuous variable depicting clock time; 
alert type, which was Drug-drug, Dose, Allergy or Other types.

3.3 Analysis
Continuous and categorical data were summarized as mean (SD) and n (%), respectively. General-
ized scatter plot smoothing was performed to estimate the number of alerts associated with highest 
salience as a function of the number of alerts per provider per day [38, p. 215]. A natural spline was 
used for the smoother with knots selected using the quantile method [39]. Regions of data with 
lower sample size, which may inhibit smoothing, were not included. Using the same smoothing ap-
proach for curve fitting, change in salience as a function of time was examined separately for pro-
viders at both resident and fellow levels of training from the first alert shown to the user for two 
years. We also examined how salience changed according to weekday and clock time by performing 
logistic regressions using generalized linear mixed models with random intercepts to account for re-
peated measurements of providers. Similarly, we modeled the probability that action was taken and 
included type of provider, season, year and type of alert as covariates; the interaction terms type of 
alert [Formel: ×] year and type of alert [Formel: ×] season were included. Covariate effects with 
P<0.05 were retained in final models. Each model comparison is reported as an odds ratio (OR) 
with corresponding 95% confidence interval (CI). Comparisons of effects with P < 0.01 from logistic 
regressions were considered statistically significant to adjust for multiple testing. Descriptive ana-
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lyses and logistic regressions were implemented using SAS 9.3 (SAS Institute, Cary, NC). Scatterplot 
smoothing estimation was performed using R 3.2.0 (R Foundation for Statistical Computing, Vien-
na, Austria).

4. Results
During the study period, 4,575 providers wrote 3,812,689 orders (26.3% outpatient). These orders 
generated 562,799 medication order-related alerts that were presented to users (28.3% outpatient). 
Of the alerts presented to the users, 47.8% were for medication dosing, 17.2% were for drug allergies, 
and 32.7% were for drug-drug interactions. The total number of alerts of these three predominant 
types, the associated salience rate, and the total counts of overridden alerts are shown in ▶ Table 1.

When grouping all medication alerts, the number of alerts per user per day associated with maxi-
mal salience was 49 alerts/day (salience: 38%) (▶ Figure 1). The x-axis represents the number of 
alerts per provider per day. The y-axis represents the salience. The solid line is the smooth function 
estimating the trend, and the dashed lines are the variability bands (standard error) around the esti-
mate. Each open circle represents the estimated proportion of canceled or modified alerts out of the 
total number of alerts per day.

When the scatterplot smoothing was performed separately for each of the three main alert types, 
the estimated number of alerts that maximize dose alert salience is 22 (salience 19%), the estimated 
number of alerts that maximize allergy alert salience is 40 (salience 47%), and the estimated number 
of alerts that maximize drug-drug alert salience is 60 (salience 34%).

When plotting alert salience by time of day, a non-linear trend is evident with users altering 
orders based on alerts more frequently at midnight and least frequently at 0700 (▶ Figure 2). For 
every one-hour increase in clock time, we can see the salience probability change. The day of the 
week also had an effect on alert salience in the logistic regression model (P < 0.0001). Salience prob-
ability was highest on Fridays (predicted probability: 13%). Compared to Fridays, individuals were 
significantly less likely to modify orders on all other weekdays except Wednesdays and Sundays 
(▶ Table 2). Individuals were least likely to modify orders on Monday (predicted probability: 10.2%). 
The average number of alerts shown to providers by day of week are seen in ▶ Table 3.

Odds of cancelling an alert varied according to the type of alert, and season (P < 0.0001 and P = 
0.0039, repsectively), but not by year. There was a statistically significant interaction between type of 
alert and season (P < 0.0001) as shown in ▶ Figure 3; however, the magnitude of this interaction was 
relatively small. Regardless of season, dose and drug-drug alerts each had higher odds of cancel-
lation and modification, compared to drug-allergy alerts (respectively, OR: 2.09 and 2.36; 95% CI: 
[2.03, 2.15] and [2.29, 2.43]; both P < 0.0001). Dose alerts were slightly more likely to be cancelled or 
modified in Fall, compared to the Spring (OR: 1.11 [1.07, 1.15]), Summer (OR: 1.09 [1.06, 1.13]) and 
Winter (OR: 1.08 [1.04, 1.12]) (all P < 0.0001). On the other hand, drug-drug alerts were less likely 
to be cancelled or modified in Fall, compared to the Spring (OR: 0.84 [0.81, 0.87]), Summer (OR: 
0.83 [0.80, 0.86]) and Winter (OR: 0.87 [0.83, 0.91]) (all P < 0.0001). Meanwhile, odds of canceling 
drug-allergy alerts were relatively stable, with Winter cancellation or modification being slightly 
higher than Summer cancellation (OR: 1.15 [1.07, 1.24]; P < 0.0001) (▶ Figure 3).

Provider role including attending physician, anesthesiologist, fellow, resident, pharmacist or reg-
istered nurse did not have an effect on alert salience. Resident providers had a relatively constant sa-
lience trend over time since start of residency (▶ Figure 4). Fellow physicians (additional training 
after residency) appeared to have a higher variability in salience throughout their fellowship (▶ Fig-
ure 5).

5. Disussion
In this study we demonstrated that alert burden does influence provider response to medication 
alerts (as measured by alert salience). In addition, we found that the time of day and day of the week 
influenced the salience to alerts. Using retrospective single site data, we have quantified these associ-
ations and other variables that may affect the acceptance of medication alert CDS.
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There are many sociotechnical and human factors issues at play when considering why providers 
respond to alert suggestions [26]. Prescriber response to medication dosing alerts is a complex, 
poorly understood, and understudied phenomenon although alert fatigue and the poor perform-
ance of alerts are well-described phenomenon. Alert fatigue is a complex issue and it is therefore dif-
ficult to quantify all possible confounders. Clinicians are inundated with a large number of decision 
support alerts and evidence suggests that they begin to ignore alerts [18]. Some of the factors in-
fluencing alert fatigue can be attributed to two ideas: cognitive overload and desensitization [40]. 
The provider’s response to alerts decreases as the total number of simultaneous alerts increased [11, 
41]. And repeated alerts that have a low sensitivity lead to a decline in response [42]. This work is an 
initial step towards identifying and addressing some of the potential causes of alert fatigue. We hope 
to improve alert salience based on these and prior published findings [43, 44]. We believe that poor 
alert salience is a proxy to alert fatigue.

Previous work postulated that alert type and burden play a role in influencing provider reaction 
to medication alerts, most notably through the phenomenon of alert fatigue whereby users become 
unresponsive to alerts with increased exposure [19, 20, 45]. Our analysis also shows that factors out-
side of alert burden, or the sheer number of alerts presented to users, appear to be associated with 
user response. In particular, time of day and day of week are associated with different user response 
rates. Based on these data, efforts focused solely on reducing alert burden may be effective but other 
factors need to be considered when improving our alerting system.

While the salience rates are quite low, they varied quite a bit across the different factors. A maxi-
mum burden of 49 is a curious and unexpected finding as it is higher than we anticipated. This is an 
unadjusted estimate that requires additional study; it is likely multifactorial in nature, related to the 
specific prescribing environment, and difficult to interpret in only one dimension. It is possible that 
certain types of providers tend to write orders that generate that number of alerts – they tend to de-
pend more on the CDS than other prescribers. While we were unable to separate out specialty in our 
provider types, it’s also possible that certain specialties result in much higher alerting rates. For 
example, oncology orders are frequently overdoses based on globally-applied medication rules; 
these rules apply across the hospital and cannot be tailored to a specific specialty, which creates 
varying salience rates across different subspecialties. Salience is likely heavily workflow-related; 
batch-ordering on rounds by one provider, signing preliminary orders for pre-op, etc, may give rise 
to very different salience rates. Individual, practice, and specialty salience rates need additional 
study.

The time of day heavily influenced the provider salience to alerts. The time of day is likely highly 
correlated with the number of orders written during that time and this tends to be highest in morn-
ing hours. A large portion of orders are written on morning rounds and have associated time press-
ures and would appear as more batch orders. The alert response to day of week is also interesting. It 
may be related to clinical schedules and overall patient volumes. While the fellows’ salience rate var-
ied more than the resident rate, it is possible that this is due to the structure of fellowship training. 
The first year of fellowship training is heavily clinical, typically followed by years of being heavily en-
gaged in laboratory and research studies, with less time spent in practice.

Our study has several important limitations. One of these is that if multiple alerts are presented 
simultaneously a single user action can be attributed to all of the presented alerts. However, the 
median number of alerts per ordering session is only 1 in our institution (with 67% of ordering 
sessions contain only one order), which minimizes the risk of false attribution. The user response to 
alerts is likely very complex and multi-factorial in nature and we have tried to control for some of 
this by including environmental elements such as time of day in the analysis. Salience rates can be 
evaluated based on many factors including large alert categories (dose, interactions, and allergies), 
provider types, time and date, and the specific content of the alert such as the wording and recom-
mendations. The content of the alert (beyond the alert type) was not analyzed in this study (for ana-
lytic scalability and practicality reasons) and is a known key driver for user acceptance. Further 
study is this area will be crucial to understanding the role the findings in this study has in the bigger 
picture. Another limitation is that alerts may be overridden appropriately, and as such, not all over-
ridden alerts should be considered direct evidence of false positive alerting. While it is possible that 
there is a valid clinical reason for overriding a specific alert, we know that the number of dosing 
alerts that fire are predominantly custom rules so they are more likely to be accurate in a pediatric 
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setting. Another potential limitation is the lack of assessing specific provider specialty, such as on-
cology, which could be a predictor of alert salience. While the study presents interesting findings, the 
findings can only be abstracted to our one situation and result in potentially over-simplifying the in-
terpretation.

While the results are interesting, this is a starting point for further inquiry, and understanding the 
workflows that are generating the data will be critical. This is a foundational paper for those studies. 
We have statistically significant correlations, but there are other unmeasurable effects that we were 
not able to include. Future analysis should likely correlate the findings to help understand the rela-
tionship and predict user behavior for purposes of improving clinical care and patient outcomes. 

6. Conclusion
Providers respond to alerts at a low rate and responsiveness to alerts depends on time of day, alert 
type, and alert burden. We observed some unexpected associations that warrant further study. Alert 
type and burden play a role in influencing provider action to medication alerts.

Abbreviations
EHR – electronic health record; CDS – clinical decision support; CI – confidence interval; CPOE – 
Computerized Provider Order Entry; OR – Odds Ratio; SE – Standard Error

Multiple Choice Question
The effectiveness of the alerts on user behavior. Four alert rules (eRules) are evaluated for effective-
ness and demonstrate the following characteristics. Which one has the highest Alert Salience Rate?

Table A sample generation of alerts presented, overridden, and heeded for four separate eRules.

a: eRule 1

b. eRule 2

c. eRule 3

d. eRule 4

# Alerts Presented

100

200

100

200

# Alerts Overridden

90

190

70

170

# Alerts Heeded

10

10

30

30

Salience Rate?

Rationale: C. The Alert Salience Rate is defined as the number of orders that were canceled or 
modified (changed prescribing behavior) divided by the total number of alerts presented to users 
(opportunities to change behavior).When calculated, eRule 1 has a salience rate of 10%, eRule 2 is 
5%, eRule 3 is 30%, and eRule 4 is 15%. 

Conflicts of Interest
The authors declare that they have no conflicts of interest. 

Institutional Review/Human Subjects
The study was approved by the institutional review board.

Acknowledgements
N/A

Research Article

Judith W Dexheimer et al.: Salience vs Burden

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



497

© Schattauer 2017

Fig. 1 Scatterplot of alert salience (canceled or modified orders after alert generation) compared to number of 
alerts shown to users per day with SE bands.

Fig. 2  
The probability of a provider responding 
to an alert by cancelling or modifying an 
order compared to the time of day (clock 
time) with SE bands. Results from logistic 
regression model.
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Fig. 3  
Cancellation and modification trends by 
alert type and seasonality. Trends for 
Dose alerts (solid line) and Drug-Drug 
alerts (dot-dash line) exceeded trend for 
Drug-Allergy alerts (dashed line). Results 
adjusted for longitudinal correlation 
using generalized linear mixed model 
(see Methods). Predicted probabilities for 
each trend were obtained from a logistic 
regression model that included Year, Sea-
son, Alert Type, and the interaction of 
Alert Type and Season. 

Fig. 4  
Resident trend from start of residency to 
20 months with SE bands.

Fig. 5  
Fellow salience rates throughout fellow-
ship period with SE bands.
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Table 3 Summary statistics on number of alerts shown to providers by day of week 

Day of the 
Week

Monday 

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Average Number of Alerts shown to pro-
viders/day

1218

1119

1200

1066

1114

460

429

Range

435, 2747

309, 2563

290, 3051

229, 1428

479, 1608

288, 639

271, 1044

Standard 
Deviation

266.86

222.08

269.43

190.47

151.62

75.25

104.93

Table 1 Alert distribution

Alert Type

Dose

Allergy

Drug-drug

* The salience rate was expressed as the total cancelled or modified orders divided by the total number of alerts. 

Alerts Overridden or Modified

33,931

6,291

26,200

Alerts Presented

269,071

90,443

157,772

Salience rate (%)*

12.6

7.0

16.6

Table 2 Alert Salience according to Weekday

Variable

Weekday (Ref: Friday)

Saturday

Sunday

Monday

Tuesday

Wednesday

Thursday

*Logistic regression model for the alert salience as a function of weekday. The first column lists the variables in-
cluded in the model. The next column is the estimated odds ratio (OR) and 95% confidence interval (CI) for the 
variable. An OR < 1 indicates alert salience is decreased for a given weekday, compared to Fridays. Results ad-
justed for season, year and alert type as well as longitudinal correlation using a generalized linear mixed model 
(see Methods)

OR

0.85

0.94

0.79

0.93

0.97

0.86

95% CI

(0.82, 0.89)

(0.90, 0.99)

(0.75, 0.83)

(0.89, 0.97)

(0.93, 1.02)

(0.82, 0.90)

P

<0.0001

0.0145

<0.0001

0.0017

0.22

<0.0001
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