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Summary
Objective: The objective of this study is to develop an algorithm to accurately identify children 
with severe early onset childhood obesity (ages 1–5.99 years) using structured and unstructured 
data from the electronic health record (EHR).
Introduction: Childhood obesity increases risk factors for cardiovascular morbidity and vascular 
disease. Accurate definition of a high precision phenotype through a standardize tool is critical to 
the success of large-scale genomic studies and validating rare monogenic variants causing severe 
early onset obesity. 
Data and Methods: Rule based and machine learning based algorithms were developed using 
structured and unstructured data from two EHR databases from Boston Children’s Hospital (BCH) 
and Cincinnati Children’s Hospital and Medical Center (CCHMC). Exclusion criteria including medi-
cations or comorbid diagnoses were defined. Machine learning algorithms were developed using 
cross-site training and testing in addition to experimenting with natural language processing fea-
tures.
Results: Precision was emphasized for a high fidelity cohort. The rule-based algorithm performed 
the best overall, 0.895 (CCHMC) and 0.770 (BCH). The best feature set for machine learning em-
ployed Unified Medical Language System (UMLS) concept unique identifiers (CUIs), ICD-9 codes, 
and RxNorm codes.
Conclusions: Detecting severe early childhood obesity is essential for the intervention potential in 
children at the highest long-term risk of developing comorbidities related to obesity and excluding 
patients with underlying pathological and non-syndromic causes of obesity assists in developing a 
high-precision cohort for genetic study. Further such phenotyping efforts inform future practical ap-
plication in health care environments utilizing clinical decision support.
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Introduction
Childhood obesity is a threat to our population’s future health. The rapid rise in obesity portends an 
epidemic of chronic diseases like diabetes, hypertension with countless co-morbidities. The National 
Health And Nutrition Examination Survey (NHANES) 2011–12 has shown a prevalence of obesity 
at 16.9% amongst children between the ages of 2–19 years [1] with, severe obesity as the fastest 
growing sub-category [2]. Severe childhood obesity in children older than 24 months, equivalent to 
Class 2 obesity in adults is considered 120% of 95th percentile of body mass index (BMI) for age [2, 
3]. There are varying estimates on the prevalence of severe childhood obesity. The NHANES data 
from 2011–2012 shows a prevalence of 5.9% across all ages and 1.9–2.6% in children between 2–5 
years of age [2]. This represents a greater than200% increase from 1999 to 2012, with the highest rise 
in Hispanic females and black males [2]. In a study of 42,559 children between 3–5 years of age 
using the electronic health record (EHR), severe obesity was seen in 1.6% of the records, with the 
highest rates in Hispanic boys [4].

Childhood obesity increases the risk of adult adiposity and cardio-metabolic complications [5]. 
Children with BMI ≥ 99th percentile in 5th grade and those with a faster increase in BMI between the 
ages of 8–12 years have higher risk factors for cardiovascular morbidity and vascular disease [6–9]. 
Although little data exists for children younger than 6 years of age, it can be presumed that the risks 
predisposing to cardiovascular morbidity are magnified in children with earlier onset of severe obes-
ity. Interventions for obesity have the greatest effect in the younger age group and those with severe 
obesity [10, 11]. Hence, early identification of young children with severe obesity presents an oppor-
tune moment for intervention.

Although there is a significant influence of the environment on obesity, genetic factors play an in-
disputable role. Twin studies have shown 40–80% heritability of various measures of obesity [12]. 
There is an increasing recognition of rare monogenic variants causing severe early onset obesity 
[13]. Some genetic causes such as leptin deficiency or Prader-Willi syndrome, though rare, may be 
amenable to treatment [14] and inform the societal attitude towards severe obesity [15]. The preva-
lence of variants causing monogenic obesity with complete or incomplete penetrance in the children 
with severe early onset obesity is largely unknown and will require genomic studies in large cohorts. 
Young children with severe obesity may be better suited for gene identification as environmental 
contributors to obesity (i.e., sedentary lifestyle, access to high calorie foods) may not be the driving 
factor or cause [16]. One of the challenges of performing such studies is the difficulty in identifica-
tion and collection of large cohorts. Hospital and clinic records can provide an excellent source of 
data in young children as they have multiple health care encounters for routine care.

A growing number of studies have targeted the EHR for phenotype detection [10, 11, 17]. The 
eMERGE (electronic MEdical Record and GEnomic) network is currently exploring more than 40 
EHR-based phenotypes [18–24]. The availability of automated BMI calculations and documen-
tation in the EHR has made diagnosis of obesity more convenient and amenable to extraction [25]. 
Accurate definition of a phenotype is critical to the success of large-scale genomic studies [26] and 
the discrete BMI data alone will not yield a high-precision phenotype as many pathologic conditions 
can cause obesity. Additionally, errors in data entry in clinical records not designed for research may 
compromise the ability to obtain valid cohorts if identified using only structured EHR data. Devel-
oping a standardized tool that can accurately identify children with severe early onset obesity will 
open several unexplored avenues of research. The standardized tool for identification should be ca-
pable of using both structured data (e.g., height, weight, diagnoses and procedure codes) and un-
structured data (e.g., physicians’ notes, discharge instructions, etc.).

Mining the unstructured EHR data using natural language processing (NLP) remains an impor-
tant research task and includes challenges and benefits. The challenges are missing or inconsistent 
data, conflicting data over time, and specialized terminology or abbreviations [25, 27]. The benefits 
include a better understanding of disease profiles, improved research applications, and clinical care 
[28–30]. In this study we evaluate the application of machine learning and rule-based approaches in 
leveraging structured and unstructured data to develop an algorithm to identify young children 
(1–5.99 years) with severe obesity, an enriched group for detecting obesity-causing genetic variants. 
As the clinical definition of obesity is based on measurement, our tool is an exclusion-based algo-
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rithm, designed to filter out the patients with obesity caused by a co-morbid condition or medi-
cation use.

Data and Methods
Data was collected from the available EHR databases for patients from BCH (BCH) and CCHMC 
(CCHMC). BCH has been using a comprehensive EHR since 2006 (Cerner Corporation, Kansas 
City, MO) and CCHMC has utilized Epic since 2010 (Epic Systems, Verona, WI). Structured infor-
mation (height, weight, demographic information, diagnosis codes (ICD-9) and medication orders) 
and unstructured data (clinical narrative notes) were extracted from the initial patient cohort. The 
Institutional Review Board at each of the hospitals approved this study.

The initial cohort was identified by the availability of a height and weight measurement perform-
ed on the same day between the ages of 1–6 years (exclusive) in the EHR. Although there is no ac-
cepted clinical definition of obesity under the age of 2, we included children 1 year and age and up 
because early-onset obesity is defined as obesity before the age of 2; monogenic obesity syndromes 
typically manifest before the age of 2. We felt that obesity at this young age was not likely to be due to 
early feeding practices and more likely to be due to genetic influences. Based on the date of measure-
ment, an age in months was computed to calculate a percentile BMI using the LMS (lambda mu 
sigma) criteria devised by the Centers for Disease Control (CDC) for children over 24 months of age 
[31, 32]. The World Health Organization (WHO) Child Growth Standards, developed with the 
WHO Multicenter Growth Reference Study in 2006 [33], are approved for use in children 0 to 2 
years of age by the CDC. The WHO growth charts were created from a diverse multi-ethnic cohort 
of breast-fed infants and are thought to better represent more ideal infant growth patterns than CDC 
charts, which were developed from a cohort of both bottle-fed and breast-fed US infants. In older 
children, the definition of obesity using WHO growth charts is a BMI of +2 SD for age and sex. As 
with the CDC, WHO doesn’t have a clinical recommendation to evaluate BMI under the age of 2; 
however, we felt that the 99th%ile of BMI on the WHO charts was a reasonable surrogate to identify 
children who might have a genetic component to their obesity. Where the data from the two growth 
charts overlapped (age in days, 730–1856), we selected the higher of the two percentiles derived 
from each growth chart for inclusion. Morbid childhood obesity was defined as BMI greater than 
99th percentile, an older definition for severe childhood obesity [34]. We chose this definition as 
both EHR systems provide raw calculations of BMI, and are unable to categorize BMI measure-
ments as percentages over the 95th percentile. The detailed algorithm is in ▶ Figure 1. For the pur-
poses of inclusion in the algorithm, at least two BMI measurements were required to be greater than 
or equal to the 99th percentile (▶ Figure 1, step 5) on different calendar days. If more than one
measurement was available for a day, the first measurement of the day was considered. To avoid out-
liers and errors in measurement, no more than 50% of all available BMI measurements could be less 
than 75th percentile (▶ Figure 1, step 6). To avoid biologically implausible values of height, all qual-
ifying height measurement were required to be greater than 5th percentile for age (▶ Figure 1, step
7).

Gold Standard
After inclusion and outlier criteria were applied, 450 patients were randomly selected from 2,200 
(CCHMC) and 200 from 3,675 (BCH) for gold standard chart review. During the chart review, the 
inclusion criteria were confirmed and additional exclusion criteria were considered (Step 8, ▶ Figure
1). The exclusion criteria list was developed by domain experts to exclude pathological conditions 
that could contribute to obesity, such as malignancy, neurological surgery, brain trauma, endocrine 
abnormalities etc. Patients receiving prolonged glucocorticoid were excluded. A patient was ex-
cluded if the EHR contained evidence of glucocorticoid treatment longer than 14 days, or three or 
more separate courses totaling more than 28 days in the six months prior to the measurement. A 
prescription of atypical anti-psychotic medications was also excluded due to their influence on body 
weight [35].
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At CCHMC, two physicians from the Division of Endocrinology and one physician from the 
Division of Emergency Medicine performed the gold standard annotation. All the charts were 
double annotated after an initial triple coding of 80 patients for training. Discrepancies were adjudi-
cated. At BCH, two physicians from the Division of Endocrinology performed double coding of 20 
patients for training. Inter-annotator agreement (IAA) was measured in pair-wise F-measure (the 
harmonic mean of positive predictive value and sensitivity). For the training sets, the IAA averaged 
89.5% at CCHMC, and was 90% at BCH. After training, the IAA at CCHMC averaged 98.6%. The 
remainder of the BCH gold standard was single annotated.

Automated Algorithms for SECO Detection
To develop an automated algorithm we experimented with rule based and machine learning meth-
ods. We compared it against a baseline performance, which was defined by the performance of the 
manual exclusion (gold standard) versus the potential SECO cases (▶ Figure 1). For the rule-based
algorithm, we manually created a map of the pathological causes of obesity (exclusion criteria de-
scribed above) to ICD-9 diagnosis codes. We generated patient vectors of all ICD-9 codes and re-
moved those with the relevant exclusionary codes (▶ Table 1). We also excluded patients who met
the criteria for medication exclusion. We evaluated the results based on the entire gold standard set 
described in the previous section.

For the machine learning algorithms, the information from EHR data was aggregated and trans-
formed into a single vector for each patient. The primary feature was Unified Medical Language Sys-
tem (UMLS) concept unique identifiers (CUIs), which represented clinical concepts in the patient’s 
EHR notes. The CUIs were extracted using Apache cTAKES [36] and converted into concept vec-
tors. cTAKES implements a full stack of NLP modules including part-of-speech tagger, parsers, re-
lation discovery modules, as well as attribute identification modules (such as negation, uncertainty, 
subject). It also employs a dictionary lookup algorithm with a sliding window to allow for term vari-
ations. For example, cTAKES identified two CUIs, C1510586 (for Autism Spectrum Disorder) and 
C0021390 (for inflammatory bowel disease), from the sentence “patient diagnosed with ASD and 
inflammatory bowel disease”, for which the CUIs became the vector representation. We partitioned 
the data into training, development and test (60%, 20%, 20%, respectively), developed the parame-
ters of the machine learning algorithm on the development set and evaluated the results on the test 
set (held-out data). We experimented with the WEKA [37] implementation of support vector ma-
chines (SVM). To determine the most appropriate feature type combinations, we set up a series of 
machine learning experiments using ICD-9 diagnosis codes, UMLS semantic types (TUIs), RxNorm 
codes for medications and ngrams (single words and phrases up to three words in length). We opti-
mized for feature type combinations and cost parameter value. We performed chi-square feature se-
lection on the best performing feature type combination to avoid over-fitting.

We also experimented with maximizing precision, using Naïve Bayes (NB) algorithm in WEKA 
because the SVM implementation doesn’t provide a probability estimate for each prediction. The 
vector input for the NB experiment was identical to the SVM input, using default parameters for the 
algorithm.

Because one of the goals in developing a decision support tool is generalizability, we also con-
ducted site experiments with training from one site and testing on the other site (e.g., training data 
from BCH and testing data from CCHMC) in addition to combining both site data for training and 
testing. The permutations of this experiment gave us nine different results with which to compare, 
not including the two classification methods. We reported the best results using positive predictive 
value, sensitivity and F-measure.

Results
In order to fairly compare the evaluation of rule and machine learning-based algorithms, 22 patients 
were excluded from CCHMC gold standard due to lack of provider documentation on the dates the 
height and weight were measured. The baseline accuracy is defined by comparing the gold standard 
against using BMI measurements only for case definition (Step 7, ▶ Figure 1). Of 428 patients in the
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CCHMC evaluation set, 320 were judged to be cases for severe early childhood obesity (74.8%). At 
BCH the baseline result was 76.5% (153/200). To restate the definition of the baseline, 25.2% of the 
CCHMC patients who were judged to be potential SECO cases (▶ Figure 1), were excluded in the
chart review process, on the bases of medication or comorbid diagnosis.

The rule-based algorithm was run on the patients who were selected as potential cases. Any pa-
tient who had an exclusionary ICD-9 diagnosis was considered a non-case. Also, any patient who 
met the medication exclusion criteria was considered non-case. The rule-based algorithm at 
CCHMC performed better for precision than at BCH (▶ Table 2). The evaluation of the rule-based
algorithm is presented in ▶ Table 2 with the baseline results. Sensitivity is not available for the base-
line results because patients were not selected from the EHR if they did not meet BMI measure-
ments threshold described above and depicted in ▶ Figure 1. Vanderbilt University and Children’s
Hospital of Philadelphia validated the rule-based algorithm at their institutions, measuring PPV of 
0.987 and 0.96, respectively. They evaluated the results of the algorithm by manual chart review of a 
random selection of 50 predicted cases at each institution. The machine learning algorithm was not 
validated at other institutions because the performance of the rule-based algorithm was superior at 
the primary institutions.

For the machine learning algorithm we presented the best performing feature type combination 
sets, using the CCHMC training and development sets and optimizing for cost parameter value, in 
increments of 0.1 from 0.1 to 20 (▶ Table 3). Several feature type combinations did not have any per-
formance gain over the default cost value (1.0) (indicated by ‘n/a’ in the optimized cost column in 
▶ Table 3. Where multiple cost values had similar results, the lowest optimized cost is in italics. The
top performance for precision used CUI codes only. However, there was very little difference in per-
formance between using CUIs only and adding ICD-9 or ICD-9 plus RxNorm codes. For our feature 
type combination we used cui+icd9+rx because it gave us better sensitivity without sacrificing preci-
sion.

Automated feature selection was performed on the cui+icd9+rx feature type combination and the 
number of features were trimmed based on sorting the features by respective chi square values. We 
experimented with feature sizes from 40–200, in increments of 10. At 100 features, the precision for 
all the combined training set experiments converged and no more significant improvement was 
seen. We report the results on the best performing algorithm (SVM) and parameters on the held-out 
test set. ▶ Figure 2 demonstrates the results of the SVM experiments.

In ▶ Figure 3, we present the results of maximizing the positive predictive value (PPV, or Preci-
sion). We used a threshold file, created in WEKA output of NB algorithm, which contained the 
probability value for each patient prediction. Then using an interpolation package in R (38), we esti-
mated the corresponding sensitivity, given a target value for PPV. ▶ Figure 3 illustrates the loss of
predicted cases of obesity, given a target value of PPV. Changing the target PPV from 0.90 to 0.95, 
there is an estimated loss of 24 cases (to 118).

Discussion
The clinical definition of obesity is based on structured data (height and weight); however, to cap-
ture a group ideal for identification of obesity-causing genetic variants, it is necessary to exclude 
those with potential secondary obesity (obesity due to another condition). We developed an exclu-
sionary algorithm, based on the available EHR information, to determine if a patient between the 
ages of 1–5.99 years met the definition of severe early childhood obesity. The utility of this algorithm 
is two-fold: first, detecting severe early childhood obesity is essential for the intervention potential in 
children at the highest long-term risk of developing comorbidities related to obesity; second, the 
avoidance of false positive cases for patients with pathological causes of obesity assists in developing 
a high-precision cohort for genetic study. The concordant results between the two study sites, 
CCHMC and BCH, (74.8% vs. 76.5%, respectively) indicates the similarity of the patient sets as well 
as the portability and generalizability of the algorithm. Since this study is a two-site test, and the 
aims of eMERGE include collaborative research, the true measure of generalizability is training the 
algorithm on one site’s data and examining the results of the other site testing data. [e.g., train: 
CCHMC, test: BCH]. The results in ▶ Figure 2 demonstrate that the SVM combined training set
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performed best on the CCHMC test set (0.813 PPV). Training on BCH data resulted in a very simi-
lar result, regardless of test data (BCH: 0.781 vs. CCHMC: 0.788 PPV). However, training on 
CCHMC data and testing on BCH data demonstrates less compatibility (0.733 PPV). The rule based 
algorithm performed better than machine learning algorithms on CCHMC test data set (0.895 vs. 
0.813, respectively) and similarly on the BCH test data set (0.770 vs. 0.767).

The experiments started with a patient population that was initially selected for obesity based 
upon the measurement data. Thus, the algorithms developed can be considered to evaluate the ex-
clusion or non-exclusion of patients from SECO case based upon pathological and/or medical 
causes of obesity. The focus of the methods evaluation was positive predictive value (PPV) because 
the goal of eMERGE study is genomic discovery of variants associated with phenotypes. Thus, a 
strong PPV, or precision is preferred.

In addition to discovery, an algorithm with a strong PPV contributes to an evidence-base for 
identifying early childhood obesity, an important step for prevention and treatment that can be en-
abled in automated electronic health data environments using clinical decision support systems 
(CDSS). As an evolving system, variations in operational definitions exist. A recent scientific review 
and meta-analysis examining outcomes using CDSS in randomized controlled trials operationally 
defined CDSS as an information system aimed to support clinical-decision making, linking patient-
specific information in the EHR with evidence-based knowledge to generate case-specific guidance 
messages through a rule- or algorithm-based software and identified moderate improvements in 
morbidity outcomes but no pediatric studies were included [39]. More recently, promising improve-
ments in reducing elementary-age child obesity risk were observed in a clinical effectiveness trial 
using CDSS in primary care [40]. This clinical decision support intervention study demonstrated 
the feasibility and utility using patient information to reliably implement clinical guidelines and 
educational messages however the information system lacked an algorithm with strong PPV to 
identify children most at risk. Future work may examine the utility of combining clinical guidelines 
and educational messages with an algorithm that precisely identifies children early in life, when 
obesity risk is most likely amendable to prevention and treatment. Such efforts can inform future 
practical application in health care environments utilizing the EHR and CDSS, functionalities and 
features that have been widely adopted and aligned with the Federal Health IT Strategic Plan, 
2015–2020. 

The feature type combination experiments are useful both specifically (for the current task) and 
generally for machine learning classification. Specifically, the rule-based algorithm eliminates co-
morbidities which can be represented by EHR ICD-9 codes and CUIs from the text (if not identified 
by ICD-9 codes). CUIs provide a higher level of abstraction than ngrams; the noise introduced by 
ngram features is evident in the drop in precision (▶ Table 3). However, it is reasonable that the rule-
based method, which solely focuses on ICD-9 diagnosis codes and medications would perform 
better than the machine learning algorithm with semantic extraction from clinical notes. Sufficient 
noise may exist in the clinical notes is not related to the inclusion or exclusion of cases. In error 
analysis, comparing the clinical notes between each site, a low number of overlapping CUI features 
were present. Only 43% of the CUI features of both sites were common, before feature selection, in-
dicating a high degree of unique terms, phrases or concepts among the notes of each site.

The Naïve Bayes PPV threshold experiments (▶ Figure 3 and ▶ Figure 4) demonstrate the effect
of placing a high PPV target on the size of an intended cohort. Researchers can eliminate most of the 
false positives in a cohort, if they are willing to accept a smaller sample size. While the rule-based al-
gorithm achieved a better balance between PPV and recall, thresholds can be utilized in machine 
learning algorithm implementations.

Further work is needed to maximize the utility and reduce the noise of the natural language in 
each site’s notes in order to improve the machine-learning algorithm.

Conclusion
We developed rule based and machine-learning based algorithms to identify severe early childhood 
obesity cases in young children for the purpose of genetic study and identification of those most 
likely to benefit from prevention and treatment interventions. We demonstrated that the rule-based 
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exclusion algorithm performed better than the machine-learning algorithm. The benefit of using a 
machine-learning algorithm is flexibility in balancing PPV and sensitivity. In addition, machine-
learning enables combining different feature types to demonstrate a more inclusive picture of the pa-
tient data. Both algorithms enabled generalizability between two different tertiary pediatric medical 
institutions. The algorithms filtered out the patients who were obese due to a co-morbid condition 
or medication use, in order to provide a high precision cohort for genetic study in the eMERGE net-
work. Using this high fidelity cohort has a significant potential for genetic study and translation into 
clinical intervention trials.
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Fig. 1 SECO (Severe Early Childhood Obesity) Inclusion Algorithm

Fig. 2 Machine Learning Prediction Results: SVM (Support Vector Machines), Training set experiments: First site 
listed is the training set, second site listed is the test set.
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Fig. 3 Machine Learning Results (Naïve Bayes) Optimizing the threshold for target of PPV (positive predictive value)
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Table 1 Exclusion Criteria

ICD-9 Codes

ICD-9 Code

191.1

244.9

250.01

250.03

253.2

253.3

255

255.41

259.1

259.8

277.89

428

530.13

555.9

556.9

581.9

585.6

756.59

758

758.6

759.81

759.89

782.3

191*

201*

202*

203*

204*

205*

206*

207*

208*

714.3*

996.8*

V42.0

V42.1

V42.7

V42.81

Description

Cancer

Hypothyroidism

Type 1 diabetes

Type 1 diabetes

Panhypopituitarism

Growth hormone deficiency

Cushing syndrome

Adrenal Insufficiency

Precocious puberty

Hypothalamic obesity

Histiocytosis

Congestive heart failure

Eosinophilic Esophagitis

Inflammatory Bowel Disease

Ulcerative colitis, unspecified

Nephrotic syndrome

End Stage Renal disease

Albright Hereditary Osteodystrophy/ Pseudohypoparathyroidism

Down Syndrome

Turner’s Syndrome

Prader-Willi Syndrome

Noonan’s Syndrome,Bardet-Biedl,Carpenter’s Syndrome,Alstrom Syndrome

Edema

Malignant neoplasm of brain

Hodgkin’s disease

Malignant neoplasms of lymphoid and hisiocytic tissue

Multiple myeloma and immunoproliferative neoplasm

Lymphoid leukemia

Myeloid leukemia 

Monocytic leukemia

Other specified Leukemia

Leukemia of unspecified cell type

juvenile rheumatoid arthritis

Acute rejection

s/p kidney transplantation

s/p heart transplantation

s/p Liver transplantation

s/p Bone marrow transplantation
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ICD-9 Codes

Medications

Atypical Antipsychotics

aripiprazole (Abilify)

clozapine (Clozaril)

olanzapine (Zyprexa)

quetiapine (Seroquel)

paliperidone (Invega)

ziprasidone (Geodon)

risperdal (risperidone)

Glucocorticoids

* All codes in the ICD-9 range that begin with this number were used.

Table 1 Continued

Table 2 Rule-based Algorithm Results

Corpus

CCHMC-BASELINE

BCH-BASELINE

CCHMC-RULE

BCH RULE

PPV1

0.748

0.765

0.895

0.770

Sensitivity

N/A

N/A

0.72

0.76

F-Measure

N/A

N/A

0.798

0.765

Table 3 Feature Type Combination and Cost Optimization

Feature Set

cui

cui+icd9

cui+icd9+rx

cui+ngram

cui+ngram+icd9

cui+ngram+icd9+rx

cui+ngram+rx

cui+rx

Icd9

Icd9+rx

ngram

ngram+icd9

ngram+icd9+rx

ngram+rx

rx

P

0.832

0.83

0.83

0.807

0.807

0.807

0.807

0.823

0.813

0.823

0.808

0.808

0.806

0.804

0.806

R

0.866

0.853

0.869

0.953

0.953

0.953

0.953

0.872

0.853

0.972

0.959

0.959

0.959

0.959

0.95

F

0.848

0.841

0.849

0.874

0.874

0.874

0.874

0.847

0.832

0.891

0.877

0.877

0.876

0.875

0.872

Optimized Cost

0.8

0.9

0.4

n/a

n/a

n/a

n/a

0.4

0.2

0.1

n/a

n/a

n/a

n/a

0.4
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