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Summary
Background: Spontaneous Reporting Systems [SRS] are critical tools in the post-licensure evalu-
ation of medical product safety. Regulatory authorities use a variety of data mining techniques to 
detect potential safety signals in SRS databases. Assessing the performance of such signal detec-
tion procedures requires simulated SRS databases, but simulation strategies proposed to date each 
have limitations.
Objective: We sought to develop a novel SRS simulation strategy based on plausible mechanisms 
for the growth of databases over time.
Methods: We developed a simulation strategy based on the network principle of preferential at-
tachment. We demonstrated how this strategy can be used to create simulations based on specific 
databases of interest, and provided an example of using such simulations to compare signal detec-
tion thresholds for a popular data mining algorithm.
Results: The preferential attachment simulations were generally structurally similar to our targeted 
SRS database, although they had fewer nodes of very high degree. The approach was able to gener-
ate signal-free SRS simulations, as well as mimicking specific known true signals. Explorations of 
different reporting thresholds for the FDA Vaccine Adverse Event Reporting System suggested that 
using proportional reporting ratio [PRR] > 3.0 may yield better signal detection operating charac-
teristics than the more commonly used PRR > 2.0 threshold.
Discussion: The network analytic approach to SRS simulation based on the principle of preferential 
attachment provides an attractive framework for exploring the performance of safety signal detec-
tion algorithms. This approach is potentially more principled and versatile than existing simulation 
approaches.
Conclusion: The utility of network-based SRS simulations needs to be further explored by evaluat-
ing other types of simulated signals with a broader range of data mining approaches, and compar-
ing network-based simulations with other simulation strategies where applicable.
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1. Background
Spontaneous Reporting Systems (SRS) are used by health authorities around the world to monitor 
for adverse reactions to medical products. Patients, physicians, manufacturers and other parties re-
port adverse event experiences that they believe to be associated with use of one or more products, 
and these reports are collected into standardized databases for analysis. In the United States, the 
Food and Drug Administration (FDA) uses the FDA Adverse Event Reporting System (FAERS, for-
merly AERS) and the Vaccine Adverse Event Reporting System (VAERS) to help assess the safety of 
drugs and vaccines, respectively, post-licensure. These databases suffer from substantial and well-
known limitations, including certain systematic biases and the absence of “denominators” with 
which to estimate adverse event incidence and relative risks [1]. Nevertheless, FAERS and VAERS 
are seen as valuable tools in post-marketing surveillance, potentially capable of identifying safety 
signals earlier than other sources [2].

Researchers and public health officials have used a wide variety of data mining methods to ident-
ify potential safety signals against the very noisy background of SRS. Roux and colleagues compared 
10 such methods in 2005; more have been proposed since then [3]. The application of such data 
mining approaches requires a decision rule: a threshold of identified signal strength above which a 
potential adverse reaction would be flagged for further investigation. It is impossible to determine 
the operating characteristics (e.g. false positive rate, false negative rate, etc.) of any given decision 
rule applied to a given data mining technique analytically, due to the inherent biases and limitations 
of SRS databases. Consequently, decision rules used in practice are chosen primarily by convention.

1.1 SRS Simulation Strategies
A few groups have attempted to more rigorously characterize the operating characteristics of various 
decision rules or have compared data mining algorithms by use of simulated SRS databases, either 
with or without known planted signals. To our knowledge, three distinct SRS simulation strategies 
have been proposed. Rolka and colleagues simulated VAERS by randomly permuting vaccine and 
adverse event (AE) term associations as found in the VAERS dataset [4]. They used these simu-
lations to assess the specificity of various thresholds for signal scores of the multi-item gamma Pois-
son shrinkage (MGPS) estimator [5]. They also added safety signals to these background databases, 
by explicitly adding cases of either a specific vaccine-AE association or of a vaccine-syndrome (i.e. 
collection of AEs) association.

Ahmed and colleagues followed a similar strategy of basing simulated SRS databases on an actual 
dataset (in their case, a French pharmacovigilance system) [6]. In their simulations, cases of drug-
AE association were drawn from a multinomial distribution whose parameters were determined by 
first assuming independence between drugs and AEs and then adding random departures from in-
dependence according to a logistic distribution. They used this simulation strategy to evaluate oper-
ating characteristics for a Bayesian decision framework [6] and to assess data mining approaches 
based on false discovery rates [7].

Tubert proposed simulating SRS data by assuming a Poisson distribution for the number of cases 
of each possible drug-AE association [8]. The expected number of cases of each association was gov-
erned by the assumed relative risk of the association, the number of patients exposed to the drug, the 
background incidence of the AE and the reporting rate for the specific drug-AE association. This 
simulation strategy was not originally developed to evaluate data mining methods but has since 
been used in that way [4, 7].

Each of these simulation approaches has strengths and all are reasonable efforts to generate artifi-
cial SRS databases for the purposes of data mining methods evaluation or comparison. We believe, 
however, that each also has significant limitations that may affect its ability to support accurate esti-
mates of decision rule operating characteristics. The Ahmed and Tubert approaches each simulate 
fundamentally pairwise drug-AE associations. In practice, associations included in SRS databases 
are far more complicated, with signals generally consisting of a product (or an interaction of prod-
ucts) associated with a constellation of AEs, both due to syndromic relationships among the symp-
toms in question and also to coding conventions which may lead to the same symptom being re-
ported under different standardized terms. This may lead to overstating the effectiveness of data 
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mining approaches that are tailored to identify exactly the pairwise drug-AE associations upon 
which the simulations are based. In addition, the Tubert approach has the drawback of requiring as-
sumptions, difficult to justify in practice, about the reporting rate of each possible drug-AE associ-
ation. The Rolka approach has the advantage of allowing higher-order relationships among products 
and AEs to be retained but, because it only shuffles existing data, it is not capable of properly repre-
senting noise due to variability in reporting rates, and disproportionality of individual drugs or AEs 
is retained. That is, the most common drugs or AEs in the database are exactly the most common 
drugs or AEs in the simulation.

1.2 Network Analysis Framework for SRS
Ball and Botsis recently proposed a novel framework for exploring VAERS using the tools of net-
work analysis [9]. In this framework, each vaccine or AE is a node in the network, and nodes are 
connected by an edge if they appear together in at least one VAERS report. The network includes 
vaccine-AE, vaccine-vaccine, and AE-AE connections, to allow for representing multivariate inter-
actions among products and adverse events [9]. AEs are coded in VAERS as Medical Dictionary for 
Regulatory Activities [MedDRA] preferred terms [PTs]. Edges can also be weighted by the number 
of reports in which pairs of nodes co-occur. Botsis and Ball argued that, by representing the complex 
interconnections between multiple vaccines and PTs, the network analysis framework provides use-
ful insight into the structure of VAERS and can be used as both a visualization and data mining tool 
for signal detection and exploration [10].

2. Objectives
We sought to develop a novel SRS simulation strategy based on plausible mechanisms for the growth 
of databases over time. We used the network analytic framework described above as a conceptual 
basis for these simulations. Our belief was that by capturing more complex interrelationships be-
tween multiple products and AEs in our simulations, we would provide a more realistic background 
against which to evaluate data mining methods.

3. Methods

3.1 Preferential attachment simulations
Our SRS simulation approach is based on the preferential attachment model of Barabási and Albert 
[11]. In their model, as new nodes enter a network, the probability of forming connections with each 
existing node is proportional to the number of connections the existing node already has. In other 
words, more highly connected nodes are more likely to make connections with new nodes, hence 
“preferential attachment.” Rather than simulating the evolution of a network as new nodes are added 
one at a time, our approach simulates the evolution of the SRS database as new spontaneous reports 
are added one at a time. Each report contains one or more product and AE nodes, potentially in-
cluding both nodes that do and that do not currently exist in the SRS database. We therefore supple-
ment the notion of preferential attachment of new nodes with a mechanism for new connections 
and reinforcement of connections between existing nodes.

The mathematical details of our simulation strategy are provided in the ▶ Appendix. In general 
terms, starting from a network representation of a single report, additional reports are simulated one 
at a time and added to the network iteratively. The simulation of each individual report is governed 
by probability distributions which describe the number of products and AEs per report, and how 
likely each product or AE in a given report is to be new to the network. The nodes in each simulated 
report are hypothetical products and AEs.
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3.2 Incorporation of Signals

The underlying simulation strategy is signal-free in the sense that there are no product-AE associ-
ations beyond those due to the preferential attachment mechanism and chance. These simulations 
can thus can be used to assess the false positive rate of a signal detection algorithm or as the basis for 
identifying deviations from an “expected” network under a null hypothesis of no true product-AE 
associations, for the purposes of signal detection. In order to incorporate safety signals for the pur-
poses of assessing the sensitivity (true positive rate) of a data mining algorithm, we employ a strat-
egy based on associations between a product and a syndrome of AEs. To have a simple gradient of 
signal strength for measuring sensitivity, we use a variant of the concept of node fitness [12]. Fitness 
is intended to represent the property that specific (“fit”) nodes might attract future connections dis-
proportionately from what would be expected under pure preferential attachment. That is, a fit node 
with a given number of connections is more likely to connect to new nodes in the network than 
would be a less fit node with the same number of connections.

To introduce simulated product-syndrome signals into our simulations, we choose simulated AEs 
for the syndrome based on strength rank in the network at the time of the product’s first appearance. 
For example, to simulate a syndrome that consists of four AEs, two of which are relatively common 
and two relatively rare, we might define the syndrome to be AEs with strength rank at the 90th, 80th, 
20th and 10th percentiles of all AEs at the time of the problem product’s first appearance in a report. 
We also control the strength of association between each of the syndromic AEs and the problem 
product by specifying the probability of occurrence of each syndromic AE in reports that include the 
problem product. The time of the product’s first appearance also affects the signal; due to preferen-
tial attachment, nodes that appear earlier in the network are more likely to attract connections. 
Therefore, a signal planted early in the growth of the simulation will tend to be easier to detect than 
one planted later.

3.3 Application to VAERS
As a test of this simulation approach, we attempted to create simulations based on all the reports to 
VAERS received in 1999. We chose 1999 because of the well-known safety signal related to intussus-
ception following rotavirus vaccination (RV) [2, 13]. We simulated the database both with and with-
out a planted signal based on the RV/intussusception signal. To create a simulated SRS analogous to 
the 1999 reports to VAERS, we derived parameters for the simulation from VAERS itself. The start-
ing point for the network was based on the first report received in VAERS in 1999, which included 
two vaccines and three PTs. To simulate the number of vaccine and PT nodes for each subsequent 
report, we used multinomial distributions reflecting the distribution of number of nodes per report 
in VAERS in 1999. These distributions are shown in ▶ Figure 1. The functions which govern the 
probability of adding novel nodes as a function of time are step functions over fixed intervals of 200 
reports (approximately one week’s worth of reports in VAERS in 1999). We calculated the parame-
ters for these step functions from the VAERS database (▶ Figure 2). We then let the network evolve 
for 12,000 reports, approximately the number of reports to VAERS in 1999.

To develop parameters for the simulated signal, one of the authors (R.B.) chose seven PTs in 
VAERS that were related to the rotavirus / intussusception signal: abdominal pain, dehydration, 
diarrhoea, hematochezia, intussusception, pyrexia and vomiting. We calculated the relative back-
ground frequency of each of these PTs in VAERS in 1999 prior to the introduction of the rotavirus 
vaccine, RotaShield (93rd, 88th, 95th, 16th, 40th, 99th and 97th percentile, respectively), and the prob-
ability of association of each with rotavirus vaccination (9%, 7.4%, 29.6%, 0.2%, 21.6%, 29.4% and 
27.3%, respectively). We used these parameters along with a variable fitness parameter for the prob-
lem vaccine node to simulate intussusception-like safety signals of varying strengths.

3.4 Data mining example
We applied proportional reporting ratio (PRR)-based signal detection rules to a series of simulated 
instances of VAERS in 1999 to demonstrate the potential utility of our proposed simulation strategy 
[14]. We generated 1,000 simulations with no planted signal to estimate the false positive rates as-
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sociated with PRR thresholds of 2.0 and 3.0 as the number of identified signals divided by the total 
number of vaccine-PT pairs in the simulation. We also generated simulations with planted RV/in-
tussusception-like signals with no added fitness and with fitness parameters of 2, 3, 4, 5 and 10 
(1,000 simulations each), and calculated the true positive rate for detecting any part of the RV/intus-
susception-like signal and for each component of the signal separately.

3.5 Software
All simulations and analyses were performed using custom code in version 2.15 of the R statistical 
computing environment [15]. We have also developed a Java application to create network simu-
lations in a user-friendly environment as part of a broader Adverse Event Network Analysis appli-
cation. This tool, which is available by request1, allows users to apply various network analysis tech-
niques to SRS data and also incorporates novel methodologies including the simulation approaches 
described in this paper.

4. Results

4.1 Comparison of simulated SRS networks and VAERS 1999
Although the simulation parameters were based on the ensemble of 1999 reports to VAERS, the 
simulations tended to have fewer PT nodes than VAERS itself. The mean (S.D.) number of vaccine 
nodes in our 7,000 simulations was 39.5 (6.0), and the mean (S.D.) number of PT nodes was 491.7 
(22.9). These numbers were not sensitive to the presence or strength of a planted signal. In 1999, 
VAERS reports included 37 distinct vaccines and 781 PTs.

The degree of a node in a network is equal to the number of distinct nodes to which it is con-
nected, and degree distributions are often used to summarize the basic structure of a network [16]. 
▶ Figure 3 shows a kernel density estimate for the distribution of ln(degree) for VAERS 1999 and for 
five randomly selected simulations. Degree is strongly bimodal in the VAERS database. The bimo-
dality is visible in the simulations as well, although VAERS has relatively more nodes with ln(degree) 
of 2 – 4 than the simulations and relatively fewer nodes with ln(degree) of 4 – 6. The randomly 
chosen simulations in ▶ Figure 3 are signal-free; however, there is no clear visual difference in de-
gree distribution between signal-free and signal-containing simulations (not shown).

4.2 Evaluation of PRR signal detection with simulated SRS networks
▶ Table 1 shows the false positive and true positive rates of PRR with signal detection thresholds of 
2.0 and 3.0, applied to 1000 simulated SRS networks with intussusception-like signals of varying 
strengths. The false positive rate was around 9% with a threshold of PRR >2.0, and around 3% with a 
threshold of PRR >3.0. These false positive rates were not sensitive to the presence of a simulated 
signal. The true positive rates of correctly identifying at least one vaccine-PT pair from the planted 
syndromic signal were 45.2% for PRR >2.0 and 40.1% for PRR >3.0 with no added “fitness” (i.e. sig-
nal strength) to the signal vaccine. The true positive rates increased with increasing signal strength 
and were 97.7% and 95.8% for PRR >2.0 and PRR >3.0, respectively, at a signal strength of 5.

The true positive rates (at PRR >3.0) for each component of the signal syndrome are shown in 
▶ Table 2 for no added fitness and fitness parameters of 5 and 10. The probability of detection of 
each component is related to the background frequency of the PT and to the probability that the PT 
will occur on each report that contains the problem vaccine. For example, the signal component 
based on hematochezia is almost impossible to detect; hematochezia is very uncommon in the back-
ground of VAERS, but it also has a very weak association with RV vaccination. The component cor-

1  For access to this software for research use, please contact the FDA Technology Transfer Program at 
 techtransfer@fda.hhs.gov. Access to this software for commercial use is available through the NIH Office of 
Technology Transfer at  http://www.ott.nih.gov/licensing_royalties/licensing_overview.aspx
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responding to pyrexia is also difficult to detect even though it is strongly associated with the prob-
lem vaccine; it is too common in the background of the simulation to be seen as disproportional in 
its occurrence with the vaccine. On the other hand, slightly less common PTs such as those corre-
sponding to vomiting and diarrhoea are relatively easy to detect at comparable strengths of associ-
ation with the problem vaccine. And the PT corresponding to intussusception itself is generally ea-
siest to detect, since this is a rare event in the background and is strongly associated with the prob-
lem vaccine.

5. Discussion
We have introduced a novel approach for simulating signal-free SRS databases. Our approach uses 
an evolutionary algorithm with a parsimonious set of assumptions. The primary assumption is that 
the growth of the database proceeds according to the principle of preferential attachment; that is, 
that more common and more highly connected products and AEs are more likely to appear in future 
reports. We believe that this is an intuitively plausible model for how an SRS might evolve if there 
were no true underlying product-AE associations and, as such, this simulation strategy provides a 
useful environment for assessing and comparing the false positive rate of data mining algorithms. 
One side effect of preferential attachment is that early “spurious” reports may disproportionately be 
reinforced as the network grows. This may be a realistic representation of certain features of real-
world SRS databases, such as the tendency for publicized associations to lead to increased report 
rates of the same association.

We can derive growth parameters for these simulations from an SRS database of interest. From 
our comparisons between the VAERS database in 1999 and our simulations based on that database, 
however, it is clear that the simulated SRS has important differences from the real data. This is per-
haps not surprising given that the simulation is signal-free, whereas any real SRS is likely to include a 
myriad of true signals of greater and lesser importance.

We also described how syndrome-like signals can be introduced into our simulated SRS data-
bases. These signals can be tailored to provide realistic representations of specific safety events in the 
real world, which are rarely as clean as a single drug disproportionately associated with a single dic-
tionary term. We believe that simulating a signal as a syndrome allows for a more realistic assess-
ment of the sensitivity of data mining algorithms, most of which are designed to identify binary 
product-AE relationships. Signals of this kind could also be used to explore the operating character-
istics of multidimensional data mining algorithms such as the MGPS in a nuanced fashion, although 
such an evaluation is beyond the scope of this article.

We presented an example in which we applied PRR-based signal detection rules to simulated 
VAERS data with and without a planted RV/intussusception-like signal. We showed that using a 
PRR >3.0 threshold decreased the false positive rate from 9% to 3% relative to a PRR >2.0 threshold, 
with a relatively less dramatic impact on sensitivity (e.g. a reduction from 97.7% sensitivity to 95.8% 
at a signal strength of 5). It should be noted, though, that even a relatively modest loss of sensitivity 
may be unacceptable for many adverse event signal detection applications. We were also able to in-
vestigate which components of the intussusception-like signal were easiest and hardest to detect. PTs 
corresponding to very common adverse events such as vomiting and diarrhoea were readily detect-
able when the association with a product was strong. However, even very strong relationships with 
the most common PT (corresponding to pyrexia in the 1999 VAERS database) were difficult to de-
tect due to the high background rate of the event.

These results help to demonstrate the potential utility of our SRS simulation approach for evalu-
ating existing data mining methods. We are also intrigued, however, by the possibility of using the 
simulations themselves as the basis for data mining applications. We believe that a signal-free simu-
lation of an SRS of interest can be used as an “expected” SRS against which an “observed” (i.e. em-
pirical) SRS can be compared. Discrepancies between the observed and simulated SRS could be in-
dications of the presence of a safety signal.
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6. Conclusion
Our network-based SRS simulations provide a novel and intuitive platform for evaluating the per-
formance of adverse event signal detection methods. The utility of these network-based SRS simu-
lations needs to be further explored by evaluating additional types of simulated signals with a 
broader range of data mining approaches, and comparing network-based simulations with other 
simulation strategies where applicable.

Clinical relevance statement
The interpretation of safety signal detection results from spontaneous reporting systems such as 
VAERS and FAERS is hampered by incomplete understanding of the operating characteristics of 
data mining algorithms. To adequately characterize these operating characteristics, simulated data-
bases that capture the underlying structure of the spontaneous reporting system, with and without 
true known signals, are required. Our network analytic simulation strategy provides a principled 
means of evaluating data mining algorithms, potentially improving our understanding of medical 
product safety.
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Fig. 1 Distribution of number of PTs (top panel) and vaccines (bottom panel) per report in VAERS in 1999. These dis-
tributions were used for the network simulations described in the article.
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Fig. 2 Probability that each PT (gray line) and vaccine (black line) in a report is new to VAERS in 1999 as a function 
of report number. These probabilities were used for the network simulations described in the article.
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Fig. 3 Gaussian kernel density estimates of degree distribution (natural log scale) for VAERS in 1999 (solid line) and 
for five randomly chosen network simulations (dashed lines).
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Signal 
strength

No signal

0

2

3

4

5

10

PRR >2.0

FP rate

9.2%

9.2%

9.2%

9.2%

9.2%

9.2%

9.2%

TP rate

NA

45.2%

75.9%

87.7%

95.6%

97.7%

100.0%

PRR >3.0

FP rate

3.1%

3.1%

3.1%

3.1%

3.1%

3.1%

3.1%

TP rate

NA

40.1%

71.1%

79.4%

92.9%

95.8%

99.8%

Table 1 PRR false positive and true positive 
signal detection rates: False positive (FP) and 
true positive (TP) signal detection rates of PRR 
applied to simulated VAERS networks with intus-
susception-like signals of varying strength. TP 
rate reflects proportion of simulations in which 
at least one component of the syndrome was de-
tected. Each row represents 1,000 simulations

Table 2 Detection rates for each component of a simulated intussusception-like signal: True positive rates are 
based on PRR >3.0 in 1,000 simulations with signal strengths of 0, 5 and 10; signal strength of 0 corresponds to no 
added fitness.

PT2

Abdominal pain

Dehydration

Diarrhoea

Hematochezia

Intussusception

Pyrexia

Vomiting

1 True positive rates are based on PRR >3.0 in 1,000 simulations with signal strengths of 0, 5 and 10; signal 
strength of 0 corresponds to no added fitness.
2 PTs are simulated to be analogous to syndromic AEs from VAERS 1999 database in terms of background frequen-
cy and probability of co-occurrence with signal vaccine.

Background 
 frequency (%ile)

93

88

95

16

40

99

97

Probability of co-
occurrence

0.090

0.074

0.296

0.002

0.216

0.294

0.273

True positive rate

01

4.7%

2.7%

22.1%

0%

10.8%

11.7%

14.5%

51

24.6%

25.8%

69.0%

0%

72.6%

11.1%

33.0%

101

23.7%

42.7%

79.5%

0.1%

96.8%

6.7%

31.8%
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Appendix

Formal description of simulation algorithm
Suppose that a simulated SRS database based on t reports contains k nodes, m1, …, mk, where each 
node corresponds to either a product or an AE. The SRS can be represented as a k*k strength matrix, 
Mt, whose i,jth entry, nij, is the number of reports in the database which contain both node mi and 
node mj, 1 ≤ i, j ≤ k. Nodes are not considered to be connected to themselves (i.e. no loops), so the 

diagonal elements, nii, are all 0. The total strength of node mi is then defined as

Next, simulated report t + 1 is added to the network. Each simulated report consists of l0 product 
nodes and l1 AE nodes. These two numbers are drawn from probability distributions with density 
functions and , respectively. The probability that each product and AE is new to the 
network is given by and , respectively. Note that these latter probabilities are 
functions of report number, reflecting the fact that, as a database evolves, the proportion of reported 
products and AEs that are novel to the SRS decreases rapidly. The functions , , 
and can be derived from the particular database that will be simulated; we describe an 
example of this in Section 3.3. Assuming 0 ≤ ≤ l0 and 0 ≤ ≤ l1 new product and AE nodes 
are included in the report, the remaining nodes in the report are drawn from existing nodes mi with 

probability proportional to the current strength of mi, . 

The strength matrix is then updated to Mt+1 to reflect the connections among the nodes, new and 
existing, in report t + 1.

When adding a signal to the simulated database, to provide a gradient of signal strength against 
which to evaluate data mining algorithms, we give each problem product node, mi, a fitness score, φi. 
The probability of drawing mi in future reports is then proportional to its strength plus fitness, 
rather than strength alone. That is, for each selection of a product for a simulated report, the prob-

ability that the problem product, mi, will be selected is rather than . 

Note that this differs from the multiplicative definition of node fitness introduced by Bianconi 
[12].
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