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To the Editor 
We read with great interest the article by Litwin, Avgar, and Pronovost discussing the multiple ways 
in which current studies of health information technology (HIT) may inadequately capture relevant 
measures. Lacking appropriate details could result in biased conclusions and may explain why some 
studies have reported negative perceptions or suboptimal outcomes of the technology being imple-
mented [1]. 

With respect to the concept of ‘time horizons’ (i.e., the time elapsed from HIT implementation to 
measurement), we would like to propose an additional perspective to consider: while organizations 
should be able to optimize a system over time to achieve desired effectiveness, it may not always be 
the case that “studies with shorter time horizons are likely to yield weaker results.” Alert fatigue and 
other factors can set in and begin to undermine the effectiveness of a system [2], resulting in waning 
usage and satisfaction. 

Alert fatigue occurs when too many (often inconsequential) warnings or messages are presented 
to a user, resulting in interrupted workflow and an increased mental burden, ultimately driving the 
user to ignore the alerts, even those that are clinically important [3]. The current literature suggests 
that alert fatigue may develop over time. For example, Embi and Leonard recently reported on the 
gradual onset of alert fatigue for patient recruitment alerts over a 36-week period [4]. Another study 
of allergy alerts showed a steady decline in adherence to these warnings over a five-year period [5]. 
Therefore, single snapshots in time may not show the temporal trends of system usage that may only 
become apparent with longitudinal measures. We have observed system usage fade substantially in 
as little as 3 months as users lost interest in interacting with a system [6]. This dynamic was also evi-
dent in a study of a clinical reminder system in which usage over time increased for some users and 
decreased for others [7]. 

Litwin et. al also noted that “studies must allow enough time for the organization to make necess-
ary changes and to undergo necessary learning around new technologies before taking a ‘post-’health 
IT performance measure.” This is often referred to as the ‘optimization period,’ a time in which 
multiple changes occur, often to both the system itself and external workflows, to ensure that every-
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thing functions as intended. This line of reasoning can be found in multiple studies of health IT. For 
example, a study of drug interaction and allergy alerts measured the incidence of overridden alerts 
9 months after a computerized provider order entry implementation to “allow clinicians … to be-
come accustomed to the upgrade” [8]. Another study of specialty care providers using a newly im-
plemented electronic health record waited to conduct their observations 6 to 9 months post-imple-
mentation in order to “allow practice habits to stabilize” [9]. 

We certainly agree that collecting measurements is important only after a system is considered 
‘stable,’ but we wonder if the management literature provides any insight regarding the selection of 
an ideal time period to wait between implementation and measurement. A rule of thumb we have 
often seen among HIT evaluation studies is to wait at least 3 months, but we know of no such con-
sensus, nor do we claim that a consensus is even practical, possible, or desired among the research 
community. A recent analysis we conducted of HIT evaluations that used observational time and 
motion approaches uncovered tremendous variability in the post-implementation time frames for 
measurements [10]. First, nearly 20% of the studies that could have reported the ‘time horizon’ (also 
described as the ‘intervention maturity’) did not actually report when they began to carry out their 
observations with respect to the HIT implementation. Second, among those that did report the 
measure, the actual timing ranged from as little as 2 months [11] to as much as 3 years later [12]. 

This lack of standard reporting and comparable time frames may hinder the generation of useful 
insights. To that end, we would like to point out recent work of ours in which we outlined a minimum 
set of data elements related to measuring the impact of HIT implementation on clinical workflow, 
known as the ‘Suggested Time And Motion Procedures’ (STAMP) [10]. STAMP describes nine over-
all areas with 33 distinct elements that we believe should be reported in time and motion studies so 
that salient study design characteristics can be compared effectively. While some of the areas we sug-
gested are specific to time and motion studies, such as training of observers and categorization of 
clinical activities to be observed, other areas are more broadly applicable and could be generalized to 
a larger set of study methodologies. These include details about the intervention itself such as the 
type of system studied (e.g., computerized prescriber order entry or electronic health record), the 
system genre (e.g., commercial or homegrown), and intervention maturity. Other details include de-
scriptive characteristics of the empirical setting including the institution type (e.g., academic or non-
academic center) and care areas (e.g., inpatient or outpatient). We found that studies in the current 
literature often reported these details in an inconsistent manner, if at all. 

The reporting guidelines in STAMP are in alignment with other initiatives to standardize research 
conduct and reporting in health informatics, including the Statement on Reporting of Evaluation 
Studies in Health Informatics (STARE-HI) [13]. At the very least, further development of and adher-
ence to such reporting standards would help researchers produce more generalizable results and 
readers interpret the results in the true context in which the study took place. Our STAMP recom-
mendations were to simply report the measures; we did not attempt to make any determination 
about what a ‘right’ study design should be, including how to determine system maturity. We wel-
come further thoughts on the issues and additional guidance from all disciplines, including manage-
ment science, on how best to design studies for evaluating HIT implementation and how best to rec-
ord and report study characteristics and contexts. 
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