Effects of dietary *Moringa oleifera* leaf meal supplementation on chicken intestinal structure and growth performance

KAVOI, B. M.¹*, GAKUYA, D. W.², MBUGUA, P. N.³ and KIAMA, S. G.¹

¹Department of Veterinary Anatomy and Physiology, University of Nairobi, Riverside Drive, P.O. Box 30197 00100, Nairobi, Kenya
²Department of Clinical Studies, University of Nairobi, P.O. Box 29053 00625, Kangemi, Nairobi, Kenya
³Department of Animal Production, University of Nairobi, P.O. Box 29053 00625, Kangemi, Nairobi, Kenya

*E-mail: drkanvo@yahoo.com

Abstract

Introduction: This study examined the effect of dietary *Moringa oleifera* leaf meal (MoLM) supplementation on intestinal structure vis-à-vis body weight gain in chickens. **Materials and Methods**: A total of 120-day-old Arbor Acres broiler chicks were randomly assigned to four groups, each with three replicates, 10 birds per replicate. Broiler feed supplemented with different quantities of MoLM, viz.: group T1 (control)- 0%, T2- 7.5%, T3- 15% and T4- 30%, was fed to the birds for 38 days, after which six birds/group were randomly selected and euthanized for histological work. **Results**: Normal histology was evident in the various intestinal components of only the lamina propria and crypts in T4 and villus muscle strands in T3 and T4 where degenerative changes were observed. Villus height, crypt depth, muscle wall thickness and villus area in T1 (controls) were 985.6 µm, 173.8 µm, 192.5 µm and 0.19 mm², respectively. Relative to the controls, an increase in the aforementioned measurements was noted in T2 (6.4%, 8.4%, 10.6% and 10.5%, respectively) while a reduction was recorded in T3 (16.1%, 10.8%, 14.8% and 15.8%, respectively) and T4 (20.1%, 14.7%, 18.3% and 21.1%, respectively). Body weight gain within the feeding period increased 31.2, 37.6, 23.9 and 10.9-fold in T1, T2, T3 and T4, respectively. Notably though, feed intake and villus height/ crypt depth ratio were not significantly different (p < 0.05) between dietary treatments. **Conclusion**: Inclusion of *M. oleifera* in the diet should be done in moderation as quantities ≥ 15% interfere with intestinal structure and consequently body weight gain.

Keywords: broilers, gut, histology, leaf meal, *M. oleifera*.

1 Introduction

Moringa oleifera Lam. is one of the most widely distributed and naturalized species of the monogenic family Moringaceae (RAMACHANDRAN, PETER and GOPALAKRISHNAN, 1980). It is a fast-growing drought-resistant tree whose morphological parts are an outstanding source of nutrients including protein, calcium, iron, vitamins and carotenoids (ANWAR, LATIF, ASHRAF et al., 2007). Indeed, the protein content of *M. oleifera* leaves, which Soliva, Kreuzer, Foidl et al. (2005) estimated at 32.1%, is equivalent to that in many pulses (JOSHI and MEHTA, 2010). Thus, this plant has properties that make it a valuable dietary supplement for livestock as well as humans (MISHRA, SINGH and SINGH, 2012). In humans, leaves and pods of *M. oleifera* confer great nutritional benefits specially to malnourished individuals (FUGLIE, 2001). In spite of these many benefits, this plant is reported to contain anti-nutritional compounds and growth rate monitoring is easy to carry out. The chicken small intestine, which consists of duodenum, jejunum and ileum, plays a significant role in the final phase of nutrient digestion and absorption (INCHAROEN, YAMAUCHI, ERIKAWA et al., 2010). The jejunum is the largest of the three segments and is where maximum digestion and absorption takes place (NASRIN, SIDDIQI, MASUM et al., 2012). Moreover, diet-induced alterations in intestinal structure are most profound in this segment (UNI, GANOT and SKLAN, 1998). In a study by Gabella (1985), the wall of the chicken small intestine was described as having four directly apposed smooth muscle layers namely, inner longitudinal layer, inner circular layer, outer circular layer and outer longitudinal layer. This author reports no layer of connective tissue equivalent to the submucosa of mammals. The intestinal mucosa is thrown into villi which are lined by a single layer of absorptive cells (the enterocytes) studded with mucus- secreting goblet cells (FISININ and SURAI, 2013). The intestinal crypts, which lie in the lamina propria, are the sites for differentiation of the enterocytes, goblet cells, enteroendocrine cells and Paneth cells (the latter cell type is still poorly studied in birds) (PORTER, BEVINS, GHOSH et al., 2002).
Diet composition can alter gut structure and consequently its absorptive capacity and animal performance (HAMEDI, REZAIAN and SHOMALI, 2011). Previously, changes in gut structure have been reported in birds fed diets of different types and composition including methylated citrus (LANGHOUT, SCHUTTE, VAN LEEUWEN et al., 1999), lupine seeds (OLKOWSKI, CLASSEN, WOJNAROWICZ et al., 2005), bamboo charcoal (RUTTANAVUT, YAMAUCHI, GOTO et al., 2009) and fermented ginger (INCHAROEN and YAMAUCHI, 2009). Although research surrounding M. oleifera adequately elucidates its impact (when fed to animals) on digestibility (SANCHEZ, SPORNDLY and LEDIN, 2006; GAKUYA, MBUGUA, KAVOI et al., 2014) and GIT organ sizes (BERGER, HABS, JAHN et al., 1984; NKUKWANA, MUCHENJE, PIETERSE et al., 2004), data on the microscopic alterations produced on the gut by this plant are scanty. In the current work, small intestines of broiler chickens fed MoLM at 0%, 7.5%, 15% and 30% for groups T1 (control), T2, T3 and T4, respectively. Chicks in each group had free access to the appropriate diets for the 38-day period, after which they were weighed and sacrificed for histological studies.

2.3 Tissue fixation and harvesting

Six birds per group (two from each replicate cage) were, at the end of the feeding period, randomly selected and euthanized by electrical stunning at 70 V followed by cervical dislocation (NKUKWANA, MUCHENJE, PIETERSE et al., 2014). The body of the chicken was opened up to allow perfusion fixation, which was done via the heart with 10% formaldehyde. The jejunum was then identified as detailed in (INCHAROEN, YAMAUCHI, ERIKAWA et al., 2010). A five-centimeter length of the mid jejunal region was tied with a thread at both ends and injected with the same fixative without causing distension. The ligated segment was then dissected out and transversally cut into small pieces, which were fixed further by immersion using the same fixative. Subsequently, pieces for microscopy were selected by systematic random sampling.

2.4 Histological procedure

Tissue pieces were dehydrated in increasing concentrations of ethanol (70%, 80%, 95% and twice in 100%) and cleared using xylene. The tissues were then infiltrated and embedded in paraffin wax. Using a rotary microtome (Leitz Wetzlar, Germany), five-micrometer-thick transverse sections were cut from the wax blocks, placed on glass slides and stained with H&E.

2.5 Histomorphometric analysis

Quantitative data related to villus height, villus breadth at basal and apical parts, crypt depth, apparent villus area, and villus height/crypt depth ratio were analyzed from H&E micrographs. Sampling of the tissues for histomorphometry was done following our earlier protocol (KAVOI, MAKANYA, PLENDL et al., 2012). Thus, for each dietary treatment group, wax blocks were prepared from tissues selected randomly from at least six birds. Ten to fifteen micrographs were prepared from each block and analysis of the various intestinal parameters carried out on 30–35 randomly generated test fields using an image analyzer (Nikon Cosmozone 1S, Nikon, Japan).

The exact jejunal regions on which measurements were taken are illustrated in Figure 1. Villus height was estimated as the distance between the villus tip and base, excluding the intestinal crypt, while villus breadth was measured at the basal and apical regions of the villus. Crypt depth was measured from the most basal to the most apical part of the crypt. Apparent villus area was estimated by trigonometry from villus height, villus breadth at base and villus breadth at apical region (IIJ, SAKI and TIVEY, 2001). Thus, where apical villus breadth is denoted by a, basal villus breadth by b and villus height by h, the apparent area of the villus (AV) was worked out as follows:

$$AV = [(b + a)/ 2] \times h$$

2.6 Data analysis

Quantitative data between control and M. oleifera-treated birds were compared using the Student’s t-test. Differences were considered to be significant at $p< 0.05$. In all cases, data were presented as mean ± SD.
3 Results

3.1 Histological observations

Intestinal crypts of birds fed with different quantities of MoLM are shown in Figure 2. The lamina propria, in which the crypts are located, was structurally normal in T1, T2 and T3 but degenerative changes are evident in T4 (Figure 2). A higher magnification of the crypts is shown in Figure 3. While the crypts appeared structurally normal in T1, T2 and T3, degenerative changes were noted in the crypts of T4. Goblet and mitotic cells were clearly discerned in T1 and T2, less clear in T3 and missing in T4 (Figure 3).

Figure 4 demonstrates the smooth muscle strands in the villus core. The muscle fibers were of normal structure in T1, where they presented well-formed long continuous bands. In T2, the muscle bands were broken into short strands while in T3 and T4, the bands showed evidence degeneration (Figure 4).

3.2 Histomorphometry

Data on the impact of MoLM on villus height, basal and apical villus breadths, and crypt depth and muscle wall thickness are presented in Table 1. The height of the villus, which was 935.6 ± 103.4 µm in the T1 (controls) increased by 6.4% in T2 while decreasing by 16.1% and 20.1% in T3 and T4, respectively. The villus breadth at the base in T1 was 187.6 ± 44.6 µm, a value which increased by 4.8% in T2 and decreased by 23.6% in T3 and 31.3% in T4. The crypt depth in T1 was estimated at 173.8± 54.3 µm and this value increased by 8.4% in T2 while decreasing by 10.8% in T3 and 14.7% in T4. Intestinal wall thickness, which measured 192.5± 26.6 µm in T1, showed an increase of 10.6% in T2 and a decrease of 14.8% in T3 and 18.3% in T4. Villus area in T1 was 0.19± 0.02 mm² and this measurement increased by 10.5% in T2 while reducing by 15.8% and 21.1% in T3 and T4, respectively. No significant differences (p < 0.09) villus height / crypt depth ratio were noted between controls (5.2± 0.6) as compared with the MoLM-treated birds (5.1± 0.5 in T2, 4.9± 0.7 in T3 and 5.0± 0.6 in T4).
3.3 Feed intake and body weight gain

Table 2 shows body weight gain (g/bird) at the start and at the end of dietary treatment and the feed intake (g/bird/day). Body weight gain within the feeding period increased 31.2, 37.6, 23.9 and 10.9-fold in T1, T2, T3 and T4, respectively. Feed consumption in controls (98.2±17.6) was not significantly different (p<0.05) from the treated groups (95.6±13.1 in T2, 81.6±12.2 in T3 and 88.3±11.9 in T4).

4 Discussion

In the current investigation, alterations in intestinal histology and histomorphometry were demonstrated in chickens whose diet was supplemented with MoLM at quantities ≥15%. A study by Nkukwana, Muchenje, Pieterse et al. (2014) showed that supplementation of MoLM at 25g/kg of chicken feed (2.5%) did not impair the efficiency of nutrient utilization, but enhanced body weight gain in the birds. In rats (ADEDAOPO, MOGBOJURI and EMIKPE, 2009), oral administration of aqueous leaf extracts of *M. oleifera* at 400, 800 and 1600 mg/kg produced a dose dependent reduction in body weight gain, which the authors attributed to possible pathologies in the gut. Studies done on several other species including pigs (MEKBUNGWAN, YAMAUCHI and THONGWITTAYA, 2003) and ducks (KHAMBUALAI, RUTTANAVUT, KITABATAKE et al., 2009) revealed that diet composition affects gut structure. The absorptive capacity of the gut and therefore body weight gain are adversely affected by diet-induced changes in gut morphology (HAMEDI, REZAIAN and SHOMALI, 2011). This is of particular interest in broiler chicken rearing where body weight gain is of great economic concern.

On villus structure, our findings were that villus heights, villus breadths and villus area decreased significantly when MoLM amounts ≥15% was included in the chicken diet, whilst villus height/crypt depth ratio remains unchanged. The thickness of the intestinal muscle wall was also noted to decrease significantly when a similar was added to the chicken feed. A study by Awad, Böhm, Razzazi-Fazeli et al. (2006), suggests a direct correlation between villus area and the surface area available for nutrient absorption. Villus length/crypt depth ratio is a key determinant of the functional capacity of the intestine and as such, a decrease in this ratio is considered deleterious to digestion and absorption of nutrients (PLUSKE, HAMPSON AND WILLIAMS, 1997). Similar importance is also attached to the intestinal muscle wall, whose activity produces local movement and folding of the mucosa to enhance contact between the epithelium and luminal contents for purposes of absorption (BURKITT, YOUNG and HEATH, 1993). In a study by Hamedi, Rezaian and Shomali (2011) feeding of chicken with sunflower meal was caused a marked reduction in villus length/crypt depth ratio, which the author attributed to villus atrophy induced by the high fiber content in the meal. Although villus atrophy appears to be a likely reason for the villus height and breadth reduction noted in the
KAVOI, B. M., GAKUYA, D. W., MBUGUA, P. N. et al.

In the current study, the magnitude of such atrophy might not have been high enough to alter the villus height/ crypt depth ratio.

Cells proliferating by mitosis in the crypt differentiate as they migrate upward to the villus and reach the villus tip where they are extruded into the intestinal lumen (Potten 1998). Thus, mitotic cells housed in the crypts constantly replenish epithelial cells, including enterocytes and goblet cells (POTTEN and GRANT, 1998). Our observations suggest that components in MoLM disrupt mitotic activity within the crypts resulting in lack of epithelial cell replacement, this therefore being a likely reason for the absence of the mitotic cells in T4 and of the goblet cell in T3 and T4. Furthermore, deepening of the crypt and lengthening of the villus cannot take place in absence of activated cell mitosis (ONDERCI, SAHIN, SAHIN et al., 2006).

Degenerative changes are observed in the lamina propria and crypts of T4, and in the villus muscle strands of T3 and T4. Epithelial cells lining the villus, especially those located at the villus tip, are sensitively affected by nutritional content (INCHAROEN, YAMAUCHI, ERIKAWA et al., 2010). In a study by Olugbemi, Mutayoba and Lekule (2010) in which MoLM inclusion in the diet exceeded 5%, decreased feed utilization efficiency and sub-optimal growth performance were demonstrated, with no reports on intestinal structure.

M. oleifera leaves contain phytates and tannins, which have the capacity to depress protein digestibility as well as intestinal absorption of dietary nutrients (MOYO, MASIKA, HUGO et al., 2011). Phytosterols are other anti-nutrient substances found in M. oleifera leaves and in seeds of the pea plant (SINGH, 1988). Shortening of intestinal villi and reduced weight gain occurred in piglets fed raw pea seed meal (MEKBUNGWAN and YAMAUCHI, 2004) suggesting that anti-nutrient constituents in the pea seeds were responsible for these changes. Going by these reports, it can be argued that similar compounds in MoLM account for the reduction in villus size, muscle wall thickness and the degeneration noted in the lamina propria and villi. Presumably, the MoLM-induced distortions in intestinal structure may be the reason for the reduced body weight gain in T3 and T4.

In previous articles, authors present contradictory data concerning the quantities of anti-nutritional compounds in M. oleifera leaves. Makkar and Becker (1997) estimated the quantities of tannin at 1.2% and phytates at 2.1% while in other studies (BAMISHAIYE, OLAYEMI, AWAGU et al., 2011), a composition of 2.6% phytates and 1.6% saponins are reported. The discrepancy in these values may be explained by the fact that the quantities of various M. oleifera leaf constituents is determined by several factors including agro-climatic conditions.
Moringa oleifera affects intestinal structure

(SIDDHURAJU and BECKER, 2003), season (IQBAL and BHANGER, 2006) and age of the tree (D’SOUZA and KULKARNI, 1993). A paper by Ferreira, Farias, Oliveira et al. (2008) reports phytate composition of 1% - 6% as capable of reducing bioavailability of minerals in monogastric animals. Tannins are a complex group of water soluble polyphenolic plant metabolites, which, at levels as low as 0.05 mg/ml reduces enzyme mediated hydrolytic reactions (HE, LV and YAO, 2006). In the present study, the chicken feed was supplemented with MoLM amounts as high as 30% and for a fairly long period of time (38 days) and the leaves used were from fully mature plants growing in a hot dry environment. Plausibly, the content of anti-nutritional compounds in the M. oleifera leaves would have been high enough to induce the observed intestinal changes.

5 Conclusion

We conclude that dietary MoLM supplementation at levels ≥ 15% impacts negatively on intestinal structure and consequently body weight gain in chickens. This should be kept in mind when using this plant to formulate feed for poultry. Given that ingredients that impair digestive function have been isolated from the M. oleifera leaves, it is highly likely that the observed intestinal histological changes are attributed to such ingredients. M. oleifera is a widely valued dietary supplement for livestock and humans. Accordingly, data regarding how consumption of this plant affects gut structure, which this study provides, are paramount. Future studies should confirm the quantities of anti-nutritional substances in the MoLM portions used in this study and how long it would take the birds to regain normal intestinal structure on withdrawing the MoLM from the diet.

Acknowledgements: We thank Carnegie-RISE AFNNET project on Natural Products Training Network for funding this study and the staff in the departments of Animal Production and Veterinary Anatomy and Physiology for their excellent technical assistance.

References

