Review Article

Thickened Gastric Folds: Approach

Roshan Agarwala, Jimil Shah, Usha Dutta

Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Thickened gastric folds (TGF) are not an uncommon finding on radiological imaging or endoscopy. It is an enigmatic condition requiring a systematic approach with correlation between clinical, laboratory, radiological, endoscopic, and histological parameters to reach a final diagnosis. It has a varied number of differential diagnosis and reaching the final diagnosis is often challenging even to an astute clinician. Findings on endoscopy are similar and biopsy results often equivocal. Differentiating between benign and malignant conditions is challenging. Routine pinch biopsy usually does not sample deep enough to get an adequate tissue sample, and other methods of biopsy may be required. Newer modalities, such as endoscopic ultrasound (EUS) and EUS-guided sampling, are helpful in differentiating benign from malignant causes. At times, exploratory laparotomy and full-thickness biopsy may be required for final diagnosis. In this review, we discuss the various differentials of TGF, with special emphasis on how to approach a case of TGF.

KEYWORDS: Large gastric folds, Menetrier’s disease, thickened gastric folds

INTRODUCTION

Thickened gastric folds (TGF) are a common finding on radiological imaging or endoscopy, the etiological possibilities ranges from inflammatory to malignant conditions.[1-6] It often poses a diagnostic dilemma which needs resolution with further evaluation. In the last decade there has been addition of endoscopic ultrasound in evaluation of TGF. A systematic approach using combination of clinical, laboratory, radiological, endoscopic, and histological parameters to establish the diagnosis would avoid unnecessary laparotomy and facilitate rapid diagnosis. This review presents the etiological possibilities and outlines an algorithm based approach to a case with thickened gastric fold.

DEFINITION OF LARGE GASTRIC FOLDS

Gastric folds measuring more than 10 mm in width on standard barium X-ray are considered as thickened gastric folds (TGF).[1] On endoscopy, large gastric folds are the ones that do not flatten with air insufflation.[2]

CAUSES

TGF can be a manifestation of various diseases. The incidence or prevalence of TGF has not been studied in detail. As such, there is not much literature in this regard. Tran et al.[3] studied 8325 consecutive upper gastrointestinal (GI) barium series and found isolated TGF in 182 patients out of the total cases. The causes are shown in Table 1.[2,4-6]

Ménétrier’s disease (MD) is a rare acquired hypertrophic gastropathy characterized by thickened folds in the body and fundus of stomach, hypochlorhydria, increased gastric mucus production, and hypoalbuminemia due to secondary gastric protein loss.[3] Males typically between 30 and 60 years of age are more commonly affected. Nausea, vomiting, abdominal pain, weight loss, pedal edema, and malabsorption are the usual presentation of MD.[8] It usually is a progressive disease with an increased risk of gastric cancer. Cytomegalovirus infection has been associated with MD, especially in young patients.[9] Helicobacter pylori infection has also been associated with TGF and MD. Interestingly, eradication of
Thickened gastric folds have shown to cause remission of symptoms in Agarwala, et al.[6,11] has a good noninvasive method to evaluate gastric loss, anorexia, anemia, malabsorption, etc. CT scan is a nonspecific upper abdominal pain, early satiety, weight loss, nausea, vomiting, manifestations for which radiological or endoscopic for the evaluation of symptoms. The usual clinical parameters is needed to reach the etiological diagnosis of TGF.

Radiological Investigations

TGF may be detected on computed tomography (CT) scan, upper GI barium series, or on endoscopy done for the evaluation of symptoms. The usual clinical manifestations for which radiological or endoscopic evaluation reveal TGF include nausea, vomiting, nonspecific upper abdominal pain, early satiety, weight loss, anorexia, anemia, malabsorption, etc. CT scan is a good noninvasive method to evaluate gastric folds.[6,11] Adequate distension of stomach is important for analysis of gastric wall. Normal gastric wall is typically 7–10 mm in maximal thickness on CT. However, it should be kept in mind that gastric rugal folds in the proximal stomach are thicker than the distal stomach. Any gastric fold thickness above 10 mm is usually considered significant. Chen et al.[6] evaluated the efficacy of multidetector CT (MDCT) in diagnosis of TGF. They reported a good accuracy of MDCT in diagnosis of gastric cancer, lymphoma, MD, and acute gastric mucosal lesions. Gastric wall was thickest in lymphoma (26.6 ± 9.0 mm), followed by scirrhous carcinoma (15.8 ± 4.5 mm), MD (11.2 ± 0.8), and acute gastric mucosal lesion (4.4 ± 1.0). They found the Cramer phi-prime correlation coefficients of the criteria with the diseases investigated to be 0.577, 0.984, 0.500, and 0.711 for wall stratification, wall enhancement pattern, appearance of gastric folds, and abnormal perigastric condition, respectively. Cutoff values for the best diagnostic accuracy between diseases were 3.8, 5.8, and 7.9. The accuracy of MDCT based on consideration of all four parameters was 100% in the diagnosis of all four diseases. Furthermore, the absence of wall stratification on MDCT was found to be the best predictor of malignancy. However, false-negative results are common, and endoscopy, endoscopic ultrasound (EUS), and histology may be required for definitive diagnosis.[6,11]

Endoscopy

Endoscopy is important for direct visualization of the gastric mucosa and sampling from the mucosa. In MD, there will be diffuse involvement of stomach with markedly increased thickness of the gastric folds, often with erosions and thick mucus overlying these thickened folds.[7] It may be so thickened to resemble cerebral convolutions.

Polyposis syndrome with gastric polyps at times can mimic MD with TGF[13,14] (Figure 1). These polyps can present as focal hypertrophic gastropathy and can be distributed so diffusely to mimic TGF. Hyperplastic polyps are most common in antrum; however, they can also occur in other areas of the stomach.[14]

In hypertrophic lymphocytic gastritis, similar to MD, there is the presence of giant folds in fundus with antral sparing. Hypertrophic hypersecretory gastropathy is a rare condition characterized by increased acid, pepsin,
Endoscopic Ultrasound

EUS can accurately visualize the gastric wall structure, including thickened layers, degree of wall layer preservation, and internal echo patterns. Different diseases exhibit different levels of EUS infiltration in the gastric wall and characteristic echo patterns. Thus, EUS aids in the differential diagnosis of large gastric folds.

On EUS, gastric wall thickness >4 mm is considered as TGF.[22] EUS features that should be looked for in a case of TGF includes

a. Gastric wall thickness

b. Gastric wall architecture-preservation or distortion of the five-layered structure

c. The layer which is thickened-superficial or deep.

Superficial mucosa and deep mucosa on EUS are superficial, whereas submucosa, muscularis propria, and serosa are considered deep layers

d. Ascites and lymph node enlargement

e. Other EUS features such as round or sharp borders and echogenicity.

A study of 65 patients analyzed the EUS features that helped to make a differential diagnosis of TGF.[22] It was seen that gastric wall thickness and thickened muscularis propria were the EUS features of the gastric wall that were associated with malignant disease. Gastric wall thickness more than 9.8 mm predicted malignancy with an accuracy of 80.6%.

Ginès et al. in a study on patients with large gastric folds and negative biopsy results reported that a thickened deep layer on EUS is associated with malignant disease.[23] A nonpreserved wall layer structure is regarded as an important EUS finding predictive of malignant disease.[24] EUS also has the advantage of detecting and sampling ascites and lymph nodes which are important extraluminal features that can suggest malignant disease.

Although EUS is very useful for assessing the architecture of the gastric wall layer, operator dependency is a big demerit of EUS. However, the measurement of gastric wall thickness might be a semi-objective method because it may be a quantitative metric. Table 2 shows the EUS features suggestive of malignancy.[22]

Histology

Pathological evaluation can also help in diagnosis of TGF.[4,5,7] MD is characterized by foveolar hyperplasia which results in mucosal thickness and increased mucus production. The overall linear architecture is maintained, although corkscrew morphology of foveolar epithelium may be seen. There is oxyntic glands atrophy with decreased parietal cells and cystically dilated deep
Thickened Gastric Folds
Barium series/CT- >10 mm
Endoscopy-do not flatten with air insufflations
EUS- > 4mm

History and Examination
Nausea, vomiting
Abdominal pain
Weight loss,
Edema and malabsorption
Diarrhea
Bleeding PR
Long term PPI use
Symptoms of anemia, early satiety
Anorexia

Tissue sample
-Pinch Biopsy
-Macrobiopsy with snare
-Jumbo Biopsy
-EUS-FNA

EUS
-Fold thickness
-Wall architecture preservation
-Superficial vs. deep layer thickening
-Ascites or lymph nodes

Laboratory tests
-Tests for H.pylori
-Tests for CMV
-Hemogram
-Fasting serum gastrin
-Serum protein and fractions

Gastric pH
-High in MD

Malignant vs. Benign Cause
-Evidence from Tissue sampling, EUS, and other tests
-Exploratory laparotomy if no diagnosis reached

Menetrier’s Disease
-Foveolar hyperplasia
-Decreased parietal cells
-Gland architecture preserved
-Tortuous and dilated glands
-Lamina propria smooth muscle hyperplasia with eosinophil and plasma cell infiltrate
-No evidence of malignancy

Polyposis syndrome
-Foveolar hyperplasia
-Parietal cells normal
-Gland architecture distorted
-Lamina propria lack of smooth muscle hyperplasia
-Eosinophil and plasma cell infiltrate may be present

Malignancy
-EUS features of malignancy
-Presence of malignant cells

Figure 2: Diagnostic algorithm for thickened gastric folds. EUS-FNA=Endoscopic ultrasound-fine-needle aspiration, MD=Ménétrier’s disease, CT=Computed tomography, CMV=Cytomegalovirus

Table 3: Features of major causes of thickened gastric folds

<table>
<thead>
<tr>
<th>Ménétrier’s disease</th>
<th>Polyposis syndrome</th>
<th>Gastric malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquired hypertrophic gastropathy</td>
<td>Presents with polyps in GIT with some syndromes having extraintestinal manifestations</td>
<td>Usually presents with ulcer or mass in the stomach</td>
</tr>
<tr>
<td>Characterized by thickened folds, hypochlorhydria, hypoalbuminemia</td>
<td>Usually presents with anemia, bleeding per rectum, and evidence of polyps elsewhere</td>
<td>Diffuse gastric cancer and lymphoma may present with TGF</td>
</tr>
<tr>
<td>Affects males typically between 30 and 60 years</td>
<td>Sometimes polyps may be so confluent that differentiation from TGF’s may be difficult</td>
<td>Adenocarcinoma of stomach with proximal polyposis of the stomach has been described in families</td>
</tr>
<tr>
<td>Usually presents with nausea, vomiting, abdominal pain, weight loss, pedal edema, and malabsorption</td>
<td>Histologically, foveolar hyperplasia with architectural distortion</td>
<td>Usually presents in elderly</td>
</tr>
<tr>
<td>Association with CMV and Helicobacter pylori</td>
<td></td>
<td>Usual presentation is with symptoms of anemia, early satiety, weight loss, and anorexia</td>
</tr>
<tr>
<td>Histologically, massive foveolar hyperplasia with relatively preserved tissue architecture</td>
<td></td>
<td>Histologically, adenocarcinoma of the stomach with proximal polyposis shows fundic gland polyps with low- and high-grade dysplasia. Diffuse gastric carcinoma shows features of diffuse infiltrating carcinoma.</td>
</tr>
</tbody>
</table>

GIT=Gastrointestinal tract, CMV=Cytomegalovirus, TGF=Thickened gastric folds
intraepithelial lymphocytes, foveolar hyperplasia being limited to areas with inflammation.[25]

In hypertrophic hypersecretory gastropathy, hyperplasia is seen in both the foveolar epithelium and oxyntic glands. Cystic dilatation of gastric glands can also be present.[15]

ZES is characterized histologically by diffuse parietal cell hyperplasia and hypertrophy without foveolar hyperplasia. Enterochromaffin-like cell hyperplasia can also be often seen.[16]

Hyperplastic polyps are characterized microscopically by foveolar hyperplasia with dilated and tortuous glands.[26] Gastric polyps in juvenile polyposis syndrome are characterized by foveolar hyperplasia with distorted glandular architecture and edematous stroma. Gastric polyps in Cronkhite–Canada syndrome (CCS) [Figure 1] resemble juvenile polyps histologically. Eosinophilic inflammation with crypt abscesses is more predominant in CCS.[27] Peutz–Jeghers syndrome polyps in the stomach are characterized by hyperplastic epithelium with arborizing smooth muscle and dilated hyperplastic glands.[14]

Adenocarcinoma of the stomach with proximal polyposis of the stomach has been described in families.[28] They manifest as large number of gastric polyps in the stomach, predominantly fundus and body, with an increased risk of intestinal-type gastric adenocarcinoma.

ENDOSCOPIC ULTRASOUND-GUIDED FINE-NEEDLE ASPIRATION

EUS-fine-needle aspiration (EUS-FNA) has been used to sample from TGF.[22] Under EUS guidance, the thickened layers can be aspirated using an EUS-FNA needle. This method can sample deeper layers and provide tissue sample for the analysis. It increases the diagnostic yield from TGF. Furthermore, EUS-FNA can be done from any enlarged lymph nodes if present.

EXPLORATORY LAPAROTOMY/DIAGNOSTIC LAPAROSCOPY

Exploratory laparotomy/diagnostic laparoscopy and full-thickness gastric biopsy remain the last weapon in our armamentarium for the diagnosis of TGF.[11] When it is not possible to reach a diagnosis with the above-mentioned investigations, exploratory laparotomy or diagnostic laparoscopy can give us full-thickness tissue which could help reach the diagnosis and exclude malignancy with quiet certainty.

DIAGNOSTIC ALGORITHM

Considering the above-mentioned facts about TGF, we propose a diagnostic algorithm to approach a patient with TGF [Figure 2]. Once TGF is diagnosed on the basis of either radiological or endoscopic methods, a multimodal systematic approach is needed to reach the final diagnosis. Adequate tissue acquisition is important, and various modalities such as pinch biopsy, snare biopsy, biopsy with jumbo forceps, or EUS-FNA may be required. Multiple modalities may be required at times. EUS can help to differentiate malignant from benign etiology. The final diagnosis is reached by histological examination of the tissue. When all the above tests are inconclusive, exploratory laparotomy and full-thickness biopsy are required. Table 3 summarizes the key features of the major causes of TGF.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

