Cortical Blindness after Cervical Spine Surgery in Supine Position – A Rare Case Report and Review of the Literature

Abstract
We report the first case of perioperative visual loss due to cortical blindness after supine cervical spine surgery. A 46-year-old female presented with severe right-sided brachialgia of 1½ years’ duration. Her magnetic resonance imaging (MRI) (cervical spine) showed severe right foraminal stenosis at C5–6. She underwent C5–6 anterior cervical disectomy and fusion. Nine hours after surgery, during a routine postoperative round, the patient complained of complete bilateral visual loss. The fundus examination and pupillary light reflex were normal. MRI of the brain showed the posterior cerebral artery infarct with hypoplasia of the left vertebral artery. She was transferred to the neurointensive care unit where antiplatelet treatment was started along with heparin. Her vision slowly began to improve, and at the end of 1 year, she had a reasonable visual acuity in both eyes. It is now standard practice in our institution to check patients’ vision immediately after surgery.

Keywords: Cervical, cortical blindness, infarct, perioperative visual loss, spine surgery, supine

Introduction
Perioperative visual loss (POVL) after the spine surgery is a nightmare for any spine surgeon. Its incidence after spine surgery usually varies from 0.028% to 0.2%.[1] The reported causes of POVL after spine surgery include external ocular injury, ischemic optic neuropathy (anterior or posterior), central or branch retinal artery occlusion, central retinal vein occlusion, cortical blindness, angle-closure glaucoma, and pituitary apoplexy.[2,3] However, when it occurs, it usually happens after spine surgery done in the prone position. We report the case of a 46-year-old female with cortical blindness after undergoing anterior cervical disectomy and fusion in the supine position, which was never reported earlier in literature.

Case Report
A 46-year-old, de novo diagnosed mild hypertensive, nondiabetic female presented with complaints of neck pain, right-sided headache, and right upper limb radiculopathy of 1½ year’s duration. She had paresthesias in the right C6 dermatome with normal hand dexterity and bowel–bladder functions. Her higher mental functions and cranial nerve examination findings were normal. She also had a normal motor and sensory examination except for mild sensory blunting in the right C6 dermatome. Plain radiographs of the cervical spine showed reduced lordosis with spondylotic changes at the C5–6 segment [Figure 1]. Computed tomography of the cervical spine showed a posterior osteophyte at the C5–6 level [Figure 2]. Magnetic resonance imaging (MRI) of the cervical spine showed disc osteophyte complex at the right C5–6 foramen impinging on the right C6 nerve root with no spinal cord changes [Figure 3]. As a trial of prolonged conservative management failed, she underwent anterior cervical disectomy and fusion at C5–6 via Smith–Robinson approach from the left side.

The surgical duration was 3 h, and the approximate blood loss was <20 ml. The blood pressures were maintained uniformly throughout the procedure with a mean arterial blood pressure (MAP) of 85–90 mmHg except for a transient decrease in the MAP to 65 mmHg for 1–2 min. The surgical procedure and recovery from anesthesia went uneventful. However, 9 h after the surgery, during a routine post-operative check, the patient complained of complete bilateral visual loss.

Raghav Dutt Mulukutla, Phani Krishna Karthik Yelamarthy1, RamMohan Vadapalli2
Departments of Spine Services and 1Consultant Spine Surgeon, Department of Spine Surgery, Udai Omni Hospital, Hyderabad, Telangana, India, 2Consultant Radiologist, Vijaya Diagnostics, Hyderabad, India

Address for correspondence:
Dr. Phani Krishna Karthik Yelamarthy,
Department of Spine Services, Udai Omni Hospital, Hyderabad, Telangana, India.
E-mail: dryelamarthykarthik@gmail.com


Submitted: 17-Oct-2020 Revised: 11-Jan-2021 Accepted: 13-Mar-2021 Published: 28-May-2021

Access this article online
Website: www.asianjns.org
DOI: 10.4103/ajns.AJNS_473_20

Quick Response Code:
of loss of vision bilaterally and with no other complaints. She was conscious, coherent, and oriented with an arterial blood pressure of 160/90 mmHg, pulse rate of 84/min, respiratory rate of 18/min, temperature of 37°C, and oxygen saturation of 99% on room air. On neurological examination, there was a complete loss of vision in both the eyes with normal cranial nerve function and motor function of all four limbs with sensory blunting in the right C6 dermatome. The fundus examination and pupillary light reflex were normal. The cerebellar function was not assessed due to complete visual loss. The patient’s laboratory parameters such as total blood count, renal and liver function tests, serum electrolytes, and cardiac enzymes were normal. Her electrocardiogram and echocardiography including transesophageal echocardiography were normal. The patient underwent MRI of the brain, which showed a posterior cerebral artery (PCA) infarct [Figure 4]. The carotid neck vessel Doppler was normal. Magnetic resonance (MR) angiography of the brain showed hypoplasia of the left vertebral artery [Figure 5]. She was transferred to the neurointensive care unit with a preliminary diagnosis of posterior circulation stroke where antiplatelet treatment was started along with unfractionated heparin and supportive management. Her vision slowly began to improve from day 4. By the end of 2 months, she regained satisfactory vision with bilateral scotomas with significant resolution of MRI changes in the brain [Figure 6]. At the end of 1 year, she regained her vision significantly with a visual acuity of 20/200 in the right eye and 20/125 in the left eye, and Humphrey Visual Field 24-2 showed a left homonymous incomplete congruous hemianopia extending into the right inferior quadrant [Figure 7]. At the end of 2 years, she had near-normal vision.

**Review of literature**

We searched PubMed from 1990 to 2020 with the keywords “cortical blindness” and “spine surgery” and “complication.” Our initial search showed 23 articles. On applying additional filters (Human studies, English language), we found 17 articles. After going through the full reports, 12 were excluded, and five cross-references were added, and a total of 10 articles were considered for the present review [Table 1].

**Results**

There are nine case reports and one retrospective case series. Out of the 80 patients in the reviewed articles, there were 54 males and 25 females while the sex of the
Discussion

The majority of the cases of POVL after spine surgery are due to posterior ischemic optic neuropathy (PION) or central retinal artery occlusion (CRAO). The incidence of cortical blindness as a cause for POVL after spine surgery is low when compared to PION or CRAO, with only a handful number of cases reported in the literature to date. When occipital blindness occurs postoperatively; generally, it is the result of the occipital infarction due to embolism or hypotension.[14] Even though embolic events are most common after cardiac surgeries, intraoperative hypotension as a cause of occipital infarction for POVL after spine surgery has been documented.[6,8,10] The common risk factors for POVL after spine surgery include prone position, prolonged operative time, anemia, intraoperative hypotension, diabetes, obesity, male sex, use of Wilson frame, excessive blood loss, and excessive intraoperative crystalloid usage.[2] The symptoms of cortical blindness set in within the first 24 h, but there are cases documented where patients developed visual loss immediately after surgery.[4] Our patient developed blindness immediately after surgery, but her vision was not checked immediately after surgery nor did she complain of loss of vision until about 9 h after the surgery. She was immediately checked by the spine team as well as by an ophthalmologist. As the pupillary reflex and fundoscopy were normal, clinical diagnosis of cortical blindness was suspected, and the patient was subjected to MRI, which showed PCA infarcts with vertebral artery hypoplasia on the left side. She showed recovery by the end of 1 year with residual visual field defects, which further improved to near-normal vision. Our patient had no documented risk factors for POVL, except for a transient decrease in the MAP to 65 mmHg, even though the exact pathogenesis due to intraoperative hypotension is not very elucidative.[15] Induced (permissive) hypotension is frequently used in elective spine surgery to reduce the intraoperative blood loss and the need for transfusion. However, it is associated with a small but serious risk of ischemic complications like myocardial infarction.[16] As the microvascular perfusion of the individual organ systems cannot be assessed directly, it is not advisable to use this technique to reduce blood loss in patients with risk factors for ischemia.[16] A week prior to her surgery during routine preoperative workup, she was found to have mildly elevated blood pressure, which was completely controlled before surgery by medication. However, MR cerebral angiography was done postoperatively after she developed cortical blindness and not before surgery. The postoperative MR angiography revealed vertebral artery hypoplasia on the left side [Figure 5]. Our patient was not subjected to invasive carotid angiography as the MR angiography showed normal carotids. The incidence of the hypoplastic vertebral artery in one cadaveric study is 10%, with the incidence in literature ranging from 2% to 35%.[17]
Table 1: The review of literature of cases with cortical blindness after spine surgery from 1990-2020

<table>
<thead>
<tr>
<th>Author</th>
<th>Number of cases</th>
<th>Age/sex</th>
<th>Spinal region involved</th>
<th>Pathology</th>
<th>Surgery</th>
<th>Position</th>
<th>Duration of surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarwal et al. [4]</td>
<td>1</td>
<td>60/female</td>
<td>Lumbar spine</td>
<td>Metastatic disease</td>
<td>Posterior decompression plus stabilization</td>
<td>Prone</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Vaiano et al. [3]</td>
<td>1</td>
<td>54/male</td>
<td>Lumbar spine</td>
<td>Degenerative</td>
<td>Intradiscal ozone therapy</td>
<td>Prone</td>
<td>N/A</td>
</tr>
<tr>
<td>Nathan et al. [6]</td>
<td>1</td>
<td>11/female</td>
<td>Dorsolumbar spine</td>
<td>Neuromuscular scoliosis</td>
<td>Posterior deformity correction</td>
<td>Prone</td>
<td>675 min</td>
</tr>
<tr>
<td>Goni et al. [7]</td>
<td>1</td>
<td>38/male</td>
<td>Lumbar spine</td>
<td>Trauma</td>
<td>Posterior spinal decompression and stabilization</td>
<td>Prone</td>
<td>105 min</td>
</tr>
<tr>
<td>Huber and Grob [8]</td>
<td>1</td>
<td>66/female</td>
<td>Lumbar spine</td>
<td>Degenerative</td>
<td>Posterior spinal decompression and fusion</td>
<td>Prone</td>
<td>195 min</td>
</tr>
<tr>
<td>Ibrahim et al. [9]</td>
<td>1</td>
<td>67/male</td>
<td>Dorsolumbar spine</td>
<td>Deformity</td>
<td>Deformity correction plus posterior spinal fusion (done in two stages)</td>
<td>Prone</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Mione et al. [10]</td>
<td>1</td>
<td>55/male</td>
<td>Lumbar spine</td>
<td>Degenerative</td>
<td>Posterior decompression</td>
<td>Prone</td>
<td>95 min</td>
</tr>
<tr>
<td>Vakharia et al. [11]</td>
<td>1</td>
<td>The early 60s</td>
<td>Dorsal spine</td>
<td>Metastasis</td>
<td>Tumor resection plus stabilization</td>
<td>Prone</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>De la Garza-Ramos et al. [12]</td>
<td>70</td>
<td>13.1±2.6 years (average) with 21% females, 70% males</td>
<td>Dorsolumbar spine</td>
<td>Deformity (idiopathic scoliosis)</td>
<td>Deformity correction</td>
<td>Prone</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Stevens et al. [13]</td>
<td>2</td>
<td>1) 58/female 2) 57/male</td>
<td>1) Lumbar spine 2) Cervical spine</td>
<td>1) Degenerative scoliosis 2) Kyphotic deformity secondary to ankylosing spondylitis</td>
<td>1) Anterior followed by posterior fusion 2) Posterior cervical osteotomy</td>
<td>1) Supine followed by prone 2) Sitting</td>
<td>Not mentioned</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Blood loss</th>
<th>Risk factors for POVL</th>
<th>Hemodynamic alterations during the procedure</th>
<th>Proposed pathogenesis for cortical blindness</th>
<th>The onset of symptoms after the procedure</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarwal et al. [4]</td>
<td>700 ml</td>
<td>Prone position 1) Blood loss 2) Crystalloid replacement 3) Hypotension</td>
<td>No</td>
<td>Not mentioned</td>
<td>Immediately after surgery 1 min</td>
<td>Full visual recovery by 9th day</td>
</tr>
<tr>
<td>Vaiano et al. [3]</td>
<td>N/A</td>
<td>Prone position 1) Hypotension 2) Oxygen-ozone therapy</td>
<td>No</td>
<td>Air embolism during oxygen-ozone therapy</td>
<td>Few hours</td>
<td>Full recovery by 6 months postsurgery</td>
</tr>
<tr>
<td>Nathan et al. [6]</td>
<td>1300 ml (820 ml transfused via cell saver)</td>
<td>Prone position, prolonged surgery, excessive blood loss, crystalloid replacement, intraoperative hypotension</td>
<td>No</td>
<td>Hypotensive anesthesia combined with excessive blood loss and fluid replacement</td>
<td>Not mentioned 12 h</td>
<td></td>
</tr>
<tr>
<td>Goni et al. [7]</td>
<td>420 ml</td>
<td>Prone position</td>
<td>No</td>
<td>Not mentioned</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Contd...
Table 1: Contd...

<table>
<thead>
<tr>
<th>Author</th>
<th>Blood loss</th>
<th>Risk factors for POVL</th>
<th>Hemodynamic alterations during the procedure</th>
<th>Proposed pathogenesis for cortical blindness</th>
<th>The onset of symptoms after the procedure</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huber and Grob[8]</td>
<td>1500 ml</td>
<td>Prone</td>
<td>Short decrease of systolic blood pressure to &lt;85 mm of Hg</td>
<td>1) Abnormal neck posture while positioning 2) Embolization due to accidental puncture of the subclavian artery</td>
<td>Immediately after surgery</td>
<td>No significant improvement at the last follow-up (5 months)</td>
</tr>
<tr>
<td>Ibrahim et al.[9]</td>
<td>1st stage-3000 ml, 2nd stage-1800 ml</td>
<td>Prone in both stages</td>
<td>No</td>
<td>Occipital seizures after the second surgery</td>
<td>6 h</td>
<td>Regained baseline vision in the 1st week after surgery</td>
</tr>
<tr>
<td>Mione et al.[10]</td>
<td>-</td>
<td>Prone</td>
<td>Blood pressure reduced to 48 mm of Hg for 12 min</td>
<td>Cerebral hypoperfusion with bilateral fetal posterior cerebral arteries</td>
<td>Few hours after surgery</td>
<td>Blind till last follow-up (2 years)</td>
</tr>
<tr>
<td>Vakharia et al.[11]</td>
<td>Not mentioned</td>
<td>Prone</td>
<td>No</td>
<td>Not mentioned</td>
<td>Few hours</td>
<td>Complete recovery at last follow-up (2 months after surgery)</td>
</tr>
<tr>
<td>De la Garza-Ramos et al.[12]</td>
<td>Not mentioned</td>
<td>Prone</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Stevens et al.[13]</td>
<td>1) 1000 ml in first stage and 8500 ml in second stage</td>
<td>Prone</td>
<td>No</td>
<td>1) Cardioembolic event due to atrial fibrillation 2) Air embolism</td>
<td>1) 4 days after second stage patient developed a left paracentral scotoma 2) 20 h after the surgery</td>
<td>1) 2 years after the surgery, the visual field defect persisted 2) Improved in 4 days after hyperbaric therapy</td>
</tr>
</tbody>
</table>

N/A - Not available; MAP - Mean arterial blood pressure; POVL - Perioperative visual loss

The frequency of posterior circulation stroke is higher in patients with hypoplastic vertebral artery.[18] Furthermore, in the reviewed literature, few cases had embolic events or occipital seizures that had led to occipital blindness, and neither of these conditions were present in our patient. The combination of transient hypotension with the presence of a single patent vertebral artery might have resulted in the posterior circulation infarct in this patient.

There are cases with cortical blindness due to occipital infarct after spine surgery, but none of them are in the supine position [Table 1]. Our case is the first of its kind reported in the English language literature where we believe that bilateral occipital infarction occurred due to transient intraoperative hypotension leading to reduced posterior circulation flow due to the presence of a single vertebral artery of normal caliber following cervical spine surgery in the supine position. The authors feel that it is important to screen patients planned for cervical spine surgery with MR angiography of the brain including the study of carotids and vertebral arteries in the routine preoperative workup, as it would be a noninvasive test unlike carotid angiogram. As the incidence of vertebral artery anomalies is high, such patients may be benefitted by strict monitoring of intraoperative blood pressures and avoidance of hypotensive anesthesia to reduce the chance of perioperative stroke. In addition, it would be prudent if the surgeon or anesthetist looks for any apparent visual loss immediately after extubation.

Conclusion

POVL can occur after spine surgery even in the supine position with very minimal blood loss and with no comorbid conditions. The operating team should be watchful of this rare complication. It is now standard practice in our institution to check patients’ vision immediately after surgery. Prompt and appropriate investigations and referral to allied specialists are mandatory.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The
patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

**Financial support and sponsorship**

Nil.

**Conflicts of interest**

There are no conflicts of interest.

**References**