Abstract
Chordoid meningioma is a rare variety of meningioma (0.5%–1%) with high rate of recurrence. They are grouped in WHO Grade II tumors. They are mainly distributed in the supratentorial location. There has been a single report of foramen magnum chordoid meningioma in a 3-year, 6-month-old child. Our patient, a 22-year-old female, admitted with progressive spastic quadriplegia with bowel and bladder involvement. She was operated with tumor resection done; postoperatively, patient showed dramatic improvement in the motor power as well as bowel and bladder function. Histopathology was suggestive of chordoid meningioma. She received 54 Gy of radiotherapy. She is doing well with no neurological deficits and no recurrence at 2-year follow-up.

Keywords: Chordoid meningioma, foramen magnum, WHO grade II tumours

Introduction
Meningiomas are common intracranial tumors and constitute between 13% and 20% of all primary intracranial tumors.[1] They are the most common tumors of the foramen magnum (FM) region, most of them arise from the ventral and lateral margins of FM.[2‑6] The term chordoid meningioma was given by Kepes et al. in 1988 to describe a meningeal neoplasm that has chordoma-like appearance on histopathology.[7] It was found to be associated with Castleman syndrome which is characterized by delayed sexual and somatic development hepatosplenomegaly, iron refractory microcytic hypochromic anaemia, plasmacytosis, and dysgammaglobulinemia.

Chordoid meningioma is a rare subtype which is associated with a high likelihood of recurrence.[8,9] It represents only 0.5%–1% of all meningiomas[8,9] and is grouped in WHO Grade II tumors.[10] They are mainly distributed in the supratentorial region. Infratentorial chordoid meningioma is rare. There has been a single report of FM chordoid meningioma in a 3-year, 6-month-old child.[11]

We report a case of FM chordoid meningioma in a 22-year-old female with reference to neuroimaging, surgical approach, histological appearance, and her neurological improvement after total surgical resection of the tumor, demonstrated by postoperative magnetic resonance imaging (MRI). To the best of our knowledge, this is the first such case in this age group.

Presentation
A 22-year-old female presented with a history of neck pain with progressive spastic quadriplegia for 1 year. She had recent worsening of her limb weakness along with bowel and bladder involvement and respiratory compromise. Preoperatively, her neurological examination revealed poor respiratory reserve, no lower cranial nerve palsy, spastic quadriplegia, and she was catheterized for urinary retention. MRI done was suggestive of large ill-defined extra-axial altered signal intensity lesion in the premedullary region compressing and displacing medulla and cervicomedullary junction with subtle signal alteration [Figure 1a and b]. All other routine investigations were normal.

Surgery
The lesion was approached from a posterolateral aspect by a right-sided suboccipital craniectomy and C1, C2 hemilaminectomy in lateral position [Figure 1c]. The tumor was decompressed preserving the neural and vascular structures. Postoperatively, she was gradually weaned off the ventilator and had to undergo a tracheostomy. She made a quick recovery and was discharged fully recovered.

How to cite this article: Kumar A, Bhaskar S, Bhardwaj M, Gupta LN. Foramen magnum chordoid meningioma in a 22-year-old female. Asian J Neurosurg 2018;13:834-7.
Kumar, et al.: Foramen magnum chordoid meningioma in a 22-year-old female

An uneventful recovery and was discharged after 3 weeks. At that time, her limb power had improved to 4/5, tracheostomy was decannulated, and bladder function had recovered. At 2-year follow-up, she has no neurological deficits except for brisk reflexes in all four of her limbs and minimal posterior column dysfunction.

Histopathology examination showed cords of eosinophilic vacuolated cells in abundant myxoid matrix [Figure 1d]. Cells were immunopositive for epithelial membrane antigen (EMA) and vimentin [Figure 1e and f]. However, they were negative for glial fibrillary acidic protein (GFAP) and S100. Based on these findings, a diagnosis of chordoid meningioma was rendered.

Postoperative MRI was suggestive of an area of dural enhancement in the ventral FM region along with signal changes in the cervicomedullary junction in the spinal cord [Figure 2a and b]. Patient was planned for postoperative radiotherapy (RT) and received 54 Gy of RT. MRI done 2 years after completion of RT does not reveal any abnormal enhancement in the dura or signal changes in the spinal cord [Figure 2c and d]. At present, she is doing well with no neurological deficits and no recurrence.

Discussion

Among all the meningiomas, only 1.8%–3.2% arise at the FM level. They are the most commonly observed FM tumors, representing 70% of all benign tumors. Most of the time, these are strictly intradural. They can be intra- and extradural, and a few may be entirely extradural.

They can be divided into craniocervical if they arise above the FM and reach inferiorly and cervicocranial if they arise in the cervical region and reach superiority. Craniocervical meningiomas are generally ventral to the brainstem while cervicocranial is posterior and lateral to it. Patients most commonly are in the fourth through sixth decades of life, but these tumors have been reported in patients of almost every age. Although FM chordoid meningioma has been reported in a 3.5-year-old child, this tumor rarely occurs in children. The most common histologic type is meningothelial, followed by psammomatous and fibrous type of meningioma.

Our case presented with the typical characteristics of the FM lesion and showed dramatic improvement in the power after surgery.

In a review of Kepes et al., a relationship with Castleman syndrome was found, the features of which are delayed somatic and sexual development, hepatosplenomegaly, iron refractory hypochromic microcytic anemia, and bone marrow plasmacytosis with dysgammaglobulinemia. This association was not found in the majority of other studies. In our case also, no systemic symptoms were present.

In a study of 42 cases of chordoid meningioma by Couce et al., the majority (88%) were large and supratentorial. No manifestation of systemic disease was there. None of the patients had a lesion at FM.

Tena-Suck et al. in their report of ten cases of chordoid meningioma found that 80% of the tumors were in supratentorial region. The age range was from 30 to 67 years old (mean, 34.2 years). The duration of symptoms varied from 3.5 months to 5 years (mean, 14.1 months). No systemic symptoms were noted and none of the patients had lesion at FM.
The age range was from 12 to 67 years old (mean, 34.2 years) in the series of Epari et al. with majority of the lesions in supratentorial region. Yang et al. in their recent series of sixty cases of chordoid meningioma have reported 33 tumors in infratentorial region (31 skull base and 2 intraventricular) and 2 in cervical region. As the exact breakup of these infratentorial lesions has not been mentioned and none of the lesions are mentioned in FM location, we assume that no lesion was present in this region. In a case report of a 3-year, 6-month-old child with FM tumor, postoperative RT was not given as there was complete resection of the tumor; however, our patient received 54 Gy of RT.

Differential diagnosis of tumor with chordoid/myxoid features includes chordoma, chordoid glioma, myxoid chondrosarcoma, myxopapillary ependymoma, and mucinous metastatic carcinoma. A panel of immunohistochemical markers is required to differentiate between these tumors. Chordomas are EMA/cytokeratin (CK)/S-100 positive; chordoid gliomas are GFAP positive; chondrosarcomas stain positively with S-100 while chordoid meningioma is EMA positive. Myxopapillary ependymomas are exclusively located in conus medullaris, cauda equina, and filum terminale and are GFAP positive; metastatic carcinoma shows reactivity with CK.

The recurrence rate for Grade II and chordoid meningioma has been reported to be 41.7% and 37.5%, respectively. In a study by Violatis et al., the majority (55.2%) of recurrences for Grade II meningioma was observed within 2 years from surgery and 94.7% within 5 years from surgery. Patient is on close follow-up for the past 2 years and carrying out her routine life activities. There is no recurrence till now.

Informed and signed consent for enrollment and publication of patient’s data was obtained from the patient.

Institutional approval and ethical clearance were obtained from the patient.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References