Case Report

Four Hands Surgery for Intracerebral Hemorrhage using ORBEYE: Educational Values and Ergonomic Advantages – A Technical Note

Abstract
We have developed a new educational approach to microsurgery in which a trainee and supervisor can cooperate with “4 hands” using the exoscope. We evaluated 4-hands surgery for intracranial hemorrhage (ICH) using the exoscope to validate the educational value and ergonomic advantages of this method. Thirty consecutive patients who underwent surgery for ICH using the exoscope between December 2018 and May 2020 were studied retrospectively. All operations were performed by a team comprising a supervisor (assistant) and a trainee (main operator). The assistant set the visual axis of the exoscope, and adjusted focus and magnification as a scopist. After setting the ORBEYE, the supervisor helped retract the brain and withdraw and irrigate the hematoma using suction tubes or brain retractors. Moreover, the trainee evacuated the hematoma with a suction tube and coagulated using bipolar forceps. Patient background and results of treatment were evaluated. Intraoperative postures of the operators were observed, and schemas compared with the use of a conventional microscope were developed. All microsurgical procedures were accomplished by a trainee with a supervisor using only the exoscope. During the surgery, the surgeons could work in a comfortable posture, and the supervisor and trainee could cooperate in microsurgical procedures using their four hands. The results of the present case series concerning evacuation of ICH were not inferior to those described in previous reports. To increase opportunities for education in microsurgery, 4-hands surgery for ICH using the exoscope appears feasible and safe and offered excellent educational value and ergonomic advantages.

Keywords: Craniotomy, evacuation, exoscope, intracranial hemorrhage, ORBEYE

Introduction
Young neurosurgeons have frequently encountered difficulty gaining sufficient opportunities to acquire skills in microneurosurgery because of recent advances in internal medicine, endovascular therapy, and endoscopic surgery for cerebrovascular disease. [1-3] Surgery for intracranial hemorrhage (ICH) has been reported as the basis of microneurosurgery and can provide an educational resource. [4] In microsurgeries using ORBEYE, the posture of the assistant is comfortable enough to assist in the surgery. [5-10] This can increase the opportunities in microsurgical education for the trainee. We evaluated a 4-hands surgery for ICH using ORBEYE to validate the educational value and ergonomic advantage of this method.

Methods
Ethics approval for the study was obtained from our institutional review board (approval number 191205). Evacuation of ICH was performed with the patient’s informed consent. The surgical inclusion criteria were ICH confirmed on brain computed tomography with hemorrhage volume >20 ml on admission and cases within 48 h of onset. Patient background and results of treatment were investigated. Thirty consecutive patients who underwent ICH evacuation using ORBEYE between December 2018 and May 2020 were investigated retrospectively. All operations were performed by a team comprising a supervisor (as an assistant) and a trainee (as the main operator). ORBEYE, a high-resolution (4K), 3-dimensional (3D) exoscope, was set and used during intradural manipulation. The assistant set the visual axis of the exoscope, and adjusted focus and magnification as a scopist. After setting the ORBEYE, the assistant (supervisor) helped retract the brain and withdraw and irrigate the

Address for correspondence:
Dr. Shingo Toyota,
Department of Neurosurgery,
Kansai Rosai Hospital,
3-1-69 Inabaso, Amagasaki 660-8511, Hyogo, Japan.
E-mail: stshito@aol.com

Murakami, et al.: ORBEYE for ICH

Results

In all 30 cases, all microsurgical procedures were performed using only ORBEYE. The patient background characteristics and results of treatment are shown in Table 1. All microsurgical procedures by the trainee were accomplished with the supervisor using ORBEYE. Educational assistance and oversight by the supervisor were provided in all cases [Figure 1]. Because the supervisor’s hands could move freely in the surgical field, the trainee and the supervisor could perform 4-hand microsurgery cooperatively in all the cases [Figure 2]. During microsurgical manipulation in all directions (0, 3, 6, and 9 o’clock directions) of the hematoma, the operator and the assistant bent their elbow joints moderately, facing the monitor, and could perform a stable operation in a comfortable posture [Figure 3].

Discussion

Recently, introduction of the exoscope into the neurosurgery has been expected to have ergonomic and educational merits. No case series of ICH evacuation using an exoscope have been reported. In the present case series, mean intraoperative blood loss, rate of rebleeding, rate of complications related to the operation, and the mortality rate were 38.5 ± 57.9 ml, 0%, 6.6%, and 6.6%, respectively, whereas in previous reports, they were 53.7–605.6 ml, 8%–18%, 8%–58.9%, and 9%–25%, respectively. Thus, the results of the present case series were not inferior to previous reports.

In the general endoscopic surgery, a scopist is expected to have enough knowledge and experience to ensure

Table 1: Patient’s characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean±SD</td>
<td>70.7±13.3</td>
</tr>
<tr>
<td>Gender male</td>
<td>19 (63.3)</td>
</tr>
<tr>
<td>Location of ICH</td>
<td></td>
</tr>
<tr>
<td>Subcortical</td>
<td>12 (40)</td>
</tr>
<tr>
<td>Putaminal</td>
<td>10 (33.3)</td>
</tr>
<tr>
<td>Cerebellar</td>
<td>4 (13.3)</td>
</tr>
<tr>
<td>Others</td>
<td>4 (13.3)</td>
</tr>
<tr>
<td>Etiology</td>
<td></td>
</tr>
<tr>
<td>Hypertensive</td>
<td>23 (76.6)</td>
</tr>
<tr>
<td>Hemorrhagic cerebral infarction</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Amyloid angiopathy</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Moya Moya disease</td>
<td>1 (3.3)</td>
</tr>
<tr>
<td>Pre operative volume of hematoma (ml), mean±SD</td>
<td>64.0±31.7</td>
</tr>
<tr>
<td>Post operative volume of hematoma (ml), mean±SD</td>
<td>8.8±20.6</td>
</tr>
<tr>
<td>Removal rate (%), mean±SD</td>
<td>90.8±17.5</td>
</tr>
<tr>
<td>Operative time (min), mean±SD</td>
<td>203.4±61.0</td>
</tr>
<tr>
<td>Intraoperative bleeding loss (ml), mean±SD</td>
<td>38.5±57.9</td>
</tr>
<tr>
<td>Hospital stay (days), mean±SD</td>
<td>26.6±13.5</td>
</tr>
<tr>
<td>mRS on admission - mRS at discharge, median (IQR)</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Complication</td>
<td>2 (6.6)</td>
</tr>
<tr>
<td>Mortality</td>
<td>2 (6.6)</td>
</tr>
</tbody>
</table>

ICH - Intracerebral hemorrhage; mRS - Modified Rankin Scale; IQR - Interquartile range; SD - Standard deviation

Figure 1: The whole operative view for the hematoma evacuation using ORBEYE. The operator (the trainee, right side) and the assistant (the supervisor, left side) bend their elbow joints moderately, facing the monitor, and they can perform a stable operation in a comfortable posture. The assistant (the supervisor) helps retract the brain using brain retractors and sets the visual axis of ORBEYE and adjusts focus and magnification as a scopist.

Figure 2: The whole operative view of 4-hands surgery for the hematoma evacuation using ORBEYE. The operator (the trainee, right side) and the assistant (the supervisor, left side) bend their elbow joints moderately, facing the monitor, and they can perform a stable operation in a comfortable posture. The operator (the trainee) evacuated the hematoma with a suction tube and coagulated using bipolar forceps. The assistant (the supervisor) helps retract the brain using brain retractors and withdraw and irrigate the hematoma using suction tubes or brain retractors.
In the neurosurgery, we are also expected to have those, in performing the microsurgery using the exoscope. To improve efficiency of operative education, in our institution, we established the policy that a supervisor ensured the operative field and set the visual axis as a scopist, including manipulation of exoscope, and a trainee dedicated operative procedure for ICH evacuation. Schemas showing that a trainee (main operator) and a supervisor (assistant) can cooperatively perform 4-hand microsurgery in a comfortable posture have been developed [Figure 2]. Using ORBEYE, a trainee and a supervisor bend the elbow joint more comfortably during microsurgical manipulation in all directions (12, 3, 6, and 9 o’clock directions) of the hematoma, compared to using a conventional microscope [Figure 3]. Thus, the supervisor can help the trainee every step of the way. Furthermore, the sharing of the 3D operative field using ORBEYE is also useful as an educational tool.[14] In the present series, the trainee and supervisor could share the 3D operative field with comfortable postures. Therefore, ORBEYE appears to have excellent educational value.

Conclusion

Exoscopic 4-hands evacuation of ICH is feasible and safe and provides excellent educational value and ergonomic advantages, increasing the opportunities for education in microsurgery.

Acknowledgments

Dr. Toyota, Dr. Taki, and I contributed to the conception and design of the study. Dr. Toyota, Dr. Suematsu, Dr. Wada, Dr. Nakagawa, Dr. Shimizu, Dr. Mori, Dr. Taki, and I recruited the patients and performed exoscopic 4-hands evacuation of ICH using ORBEYE. Dr. Toyota, Dr. Taki, and I contributed to writing and revising the manuscript.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

