Brainstem tumors: Current management and future directions

Pablo F. Recinos1,2, Gazanfar Rahmathulla2, George I. Jallo1, Violette Renard Recinos2
1Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. 2Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio

ABSTRACT

Tumors arising in the brainstem comprise 10–20% of all pediatric central nervous system (CNS) tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ‘no man’s land’ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors.

Key words: Brainstem glioma, brainstem tumors, cervicomedullary, dorsal exophytic tumors, management, medulla, midbrain tumors, pontine glioma, tectal tumors

INTRODUCTION

Brainstem tumors comprise 10–20% of all central nervous system (CNS) tumors in the pediatric population and account for less than 2% of intrinsic tumors.1,2 There are approximately 150–300 cases diagnosed annually in the United States.3,4 The typical age at diagnosis is between 7 and 9 years, although they can occur at any age without any gender predilection.5,6 About 75% of brainstem neoplasms are diffuse gliomas, with focal lesions representing a minority. The outcomes for these tumors lie at two ends of a spectrum; diffuse gliomas have a poor prognosis, with median survivals ranging from 4 to 15 months7 whereas focal tumors have a good prognosis,8,9 with five-year, progression-free survival rates of 60% and overall five-year survival of 89%.10

Historically, brainstem tumors were grouped together as a single entity with uniformly fatal outcomes, but it is now understood that their behavior depends on their anatomic location, focality, and histopathology. The early 1980s saw several neurosurgeons reporting favorable surgical outcomes for certain types of brainstem gliomas11-15 and the introduction of various classification systems in an attempt to identify tumors that could be successfully treated with surgery. The introduction of magnetic resonance imaging (MRI) helped delineate tumor location and predict tumor behavior. A thorough understanding of brainstem tumor behavior based on location and imaging characteristics is essential in determining the appropriate management options.

Imaging and Classification Schemes

Although previous classifications were created based on surgical observation and the use of computed tomography (CT),13,15,16 the primary diagnostic modality for brainstem tumors is MRI.17-19 The multi-planar MR images provide the most precise information regarding tumor epicenter, tumor diagnosis, and prediction of its biological behavior. Angiography, MRI spectroscopy or diffusion-weighted MRI sequences may be utilized20,21 to improve the diagnostic accuracy in uncertain cases and have largely replaced the need for stereotactic biopsy.22,23

Early classifications categorized brainstem tumors into focal or diffuse. In general, focal tumors tend to be amenable to surgical resection while surgery is rarely indicated for diffuse tumors24 [Table 1]. More composite schemes subdivide these tumors by location within the brainstem (midbrain, pons, and medulla), contrast enhancement pattern, presence or absence of exophytic growth in relation to brainstem, and presence

<table>
<thead>
<tr>
<th>Access this article online</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Response Code:</td>
</tr>
<tr>
<td>Website: www.ijns.in</td>
</tr>
<tr>
<td>DOI: 10.4103/2277-9167.94371</td>
</tr>
</tbody>
</table>

Address for correspondence: Dr. Violette Renard Recinos, Section Head, Pediatric Neurosurgical Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, S-60, Cleveland, OH 44195, USA. E-mail: recinov@ccf.org
Figure 1: Diffuse brainstem glioma. This malignant tumor typically arises in the pons and causes global brainstem enlargement. Due to its infiltrative nature, it has poorly demarcated borders. On T1-weighted sequences, it is hypointense and does not significantly enhance with contrast (a and b). On T2-weighted (c) and FLAIR (d) sequences, it has indiscrerte areas of hyperintense signal, which distinguishes them from focal tumors. Type I are diffuse brainstem gliomas, which account for up to 75% of all tumors. They are characterized by diffuse infiltration, global enlargement of the brainstem, and are generally greater than 2 cm at the time of presentation. The epicenter of the lesion usually lies in the pons with rostral and caudal extension not being unusual. On MRI, they are hypointense on T1-weighted images with variable contrast enhancement and have indiscrrete hyperintensity on T2-weighted images [18] [Figure 1]. Typically, these lesions are located in the pons and are malignant fibrillary astrocytomas (WHO Grade III or IV). Type II are focal, intrinsic tumors that can be cystic or solid. Unlike Type I lesions, these tumors are sharply demarcated from surrounding tissue on MRI sequences and are associated with less brainstem edema. The majority of these lesions are low-grade gliomas (WHO I or II). Contrast enhancement may be variable, but uniform enhancement is highly suggestive of WHO I lesions. Type III are exophytic tumors that arise from the subependymal glial tissue of the fourth ventricle and mostly grow dorsally or laterally. Radiographically, they possess MRI characteristics similar to type II lesions, and histologically, these lesions are usually low-grade lesions (WHO I or II). Interestingly, some authors have noted that exophytic tumors that grow laterally and ventrally into the brainstem are higher-grade lesions compared to those that project dorsally [24] [Figure 2]. Type IV lesions are cervicomedullary tumors similar in imaging, histology, and behavior to intramedullary spinal cord gliomas. The majority of type IV lesions are low grade, non-infiltrative, and thus their growth is usually confined rostrally by the white matter of the corticospinal tract and medial lemniscus [24] [Figure 3].

<table>
<thead>
<tr>
<th>Table 1: Classification systems for brainstem tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
</tr>
</tbody>
</table>
| Epstein F et al., 1985[1] | Intrinsic
Diffuse
Focal
Cervicomedullary
Anterolateral into cerebellopontine angle
Posterolateral and into brachium pontine
Disseminated
Positive cytology
Positive myelography | CT |
Cervicomedullary | CT, MRI and surgical observation |
Group Ia – Intrinsic brainstem tumors
Group Ila – Intrinsic brainstem tumors
Group III – Focal cystic tumor with contrast enhancement
Group IV – Focal intrinsic isodense, contrast enhancing | CT |
| Barkovich AJ et al., 1990[4] | Location (midbrain, pons, medulla)
Focality (diffuse of focal)
Direction and extent of tumor growth
Degree of brainstem enlargement
Exophytic growth
Hemorrhage or necrosis
Evidence of hydrocephalus | MRI |
| Albright AL et al., 1996[5] | Diffuse
Focal (midbrain, pons, medulla) | MRI |
Focal
Tectal
Pons
Diffuse
Focal
Medulla
Diffuse
Focal
Dorsal exophytic | MRI |
| Rubin et al., 1998[7] | Cervicomedullary
Exophytic
Cystic
Focal
Diffuse | Clinical features and MRI |
| Choux M et al., 2000[8] | Type I – Diffuse
Type II – Intrinsic, focal
Type III – Exophytic, focal
Type IV – Cervicomedullary | CT and MRI |

CT: Computerized tomography; MRI: Magnetic resonance imaging of hydrocephalus or hemorrhage. The most recent and clinically used classification system was proposed by Choux et al. They classified brainstem tumors into four types by utilizing both CT and MRI images to group them. [25]
Management

Diffuse gliomas are extremely malignant lesions with a rapidly progressive course and dismal prognosis. The clinical course is similar to glioblastoma multiforme with no role for radical surgery. The diagnosis is generally made on imaging alone as biopsy carries unnecessary risk of morbidity and does not change management in most cases. Stereotactic biopsy is reserved for indeterminate lesions on MRI with unusual presentations or when required by an investigational study protocol. Medically, corticosteroids can be used to decrease the associated edema, although this effect is temporary. Conventional fractionated radiation has been shown to provide temporary stabilization or transient improvement of clinical symptoms. Despite theoretical advantages, hyperfractionated radiation did not demonstrate any benefit over conventional radiation therapy for the treatment of diffuse brainstem gliomas in a large Phase III study.

The primary treatment for focal tumors (Type II-IV) is surgical resection. The goal of surgery is to resect as much tumor as possible while avoiding neurological sequelae. Due to the lack of redundancy in the brainstem, surgical morbidity is significantly higher than other areas of the central nervous system. Use of neurophysiological mapping and monitoring is essential to identify and avoid injury to vital brainstem structures. Although radical resection can be safely achieved in selected cases, overly aggressive resection at the cost of permanent neurological deficit should be avoided.

With the exception of upper midbrain neoplasms, tumors in the brainstem are accessed through a standard posterior fossa approach. The prone position provides easy access to the lower brainstem and allows manipulation of the patient's head and shoulders to maximize visualization. Some authors have advocated the sitting position, although this position carries risk of air embolism and pneumocephalus. Focal intrinsic tumors which are dorsally located are commonly approached via a midline suboccipital craniotomy, while those in the ventral pons or those extending into the cerebellopontine angle exposed using a lateral retrosigmoid approach. The surgical approach into the medulla should provide wide exposure with identification of all crucial landmarks at the point of entry into the tumor. Dorsal exophytic tumors are approached via a midline suboccipital craniotomy and a high cervical laminectomy, fourth ventricle exposure via a telovelar route avoiding vermian or cerebellar tonsil injury. As these tumors originate from ependymal cells on the floor of the fourth ventricle, mapping of cranial nerve nuclei can be instrumental to avoid damaging them. If the tumor involves cranial nerve nuclei or motor tracts, radical resection should not be pursued. Although hydrocephalus secondary to tumor progression may develop after subtotal resection, management of hydrocephalus is preferable to incurring a risk of permanent cranial nerve deficits. Focal medullary tumors typically bulge into the obex. The approach is usually midline suboccipital craniectomy with cervical laminectomy. Intraoperative ultrasonography is used to delineate the tumor margins. After the dura is opened, a midline myelotomy is performed to expose...
the tumor and avoid damage to the posterior columns.[35] Aggressive radical excision of these tumors is ideal though subtotal debulking is also beneficial if a risk of damage to medullary structures is perceived.[10] In the case of intrinsic cervicomedullary tumors, resection of greater than 50\% has shown to decrease tumor progression and increase long-term survival.[36-39] The high risks associated with radical resection should be kept in mind, which include damage to lower cranial nerves resulting in tracheostomy, feeding gastrostomy, voice changes, and increased incidence of upper respiratory infections and pneumonias.[38,41,42] Continuous neurophysiological monitoring during the procedure is indispensable to guide dissection around critical structures.[30,32,33]

The location of the tumor and type of treatment dictate the monitoring and postoperative management. Patients treated with CSF diversion for focal midbrain tumors have good outcomes[43] whereas open surgical excision can result in temperature control and sleep-cycle disturbances.[12] For those patients who have undergone prior shunt surgery, they should be monitored for reemergence of signs and symptoms of hydrocephalus and followed for potential shunt infection and failure.

POSTOPERATIVE COURSE

Diffuse brainstem gliomas, which are typically found in the pons, carry the worst prognosis. Survival rates at one year range from 35 to 46\% and at three years range from 11 to 17\%[18,44] following radiation therapy. Dorsal exophytic tumors treated with surgery have an excellent prognosis with Pollack et al. reporting a long-term survival of 94\% in their series of 18 patients who underwent subtotal resections, with the one death related to a shunt malfunction. They also reported completed disappearance or stable residual disease in 11 patients.[36] Sixth and seventh nerve palsies are not uncommon as the nuclei are located in the floor of the fourth ventricle and can easily be damaged.[35] Hydrocephalus requires close observation and is treated with CSF diversion, if necessary.[35,36] Focal medullary tumors also have a long overall survival and progression-free survival after surgery and/or adjuvant therapy.[14,38] However, significant lower cranial nerve dysfunction has been reported in patients presenting with a history of voice changes, pneumonia, and upper respiratory infections with a higher risk of requiring postoperative ventilation.[39] In a series of 41 patients reported by Jallo et al., 19 patients (46\%) had significant lower cranial nerve deficits that required a tracheostomy, postoperative ventilation, and a feeding gastrostomy with a majority (79\%) demonstrating significant resolution of their deficits.[41] In the case of cervicomedullary neoplasms, outcome after resection is directly related to the duration of the prodrome and the degree of preoperative dysfunction.[10,45]

FUTURE DIRECTIONS

Radiation and/or chemotherapy are the current mainstay for diffuse brainstem gliomas[40] neither providing a cure nor prolonging survival. Chemotherapeutic agents have minimal access due to blood brain barrier (BBB) obstruction to systemically administered drugs. The transient response to radiotherapy is brief and progressive symptoms can be expected at a median of about nine months after diagnosis. Delayed toxicity also includes the potential radiation necrosis of the brainstem and radiation-induced injury to the occipital lobes and the hypothalamic axis.[47,48]

Convection enhanced delivery (CED) is a method of local delivery that drives an infusate through the extracellular fluid in neural tissue by the use of a continuous pressure gradient.[49] Experimental studies have shown that CED can achieve a local drug concentration 10,000-fold greater than that achieved by intravenous drug administration without causing significant systemic exposure.[50,51] Another method of local drug delivery in set aliquots rather than a continuous infusion as in CED includes the use of a cannulated screw attached to the skull of the animal.[52,53] Although local delivery techniques have not yet transitioned to clinical use in humans, alternative devices and delivery methods may help attain a critical advantage in the fight against these tumors.

Brainstem tumors may also benefit from gene therapy with prodrug activation systems using the herpes simplex virus thymidine kinase (HSV-TK) gene and treatment with ganciclovir (GCV) for gene therapy.[54,55] HSV-TK converts the prodrug ganciclovir (GCV) into a toxic nucleotide analogue, whose incorporation into cellular DNA blocks cell proliferation. Following repetitive ganciclovir (GCV) intraperitoneal or intravenous injection, effective killing of glioma cells is observed.[56] Local production of endogenous inhibitors of angiogenesis (angiostatin, endostatin, and interferon (IFN)-alpha(1)) has been shown to decrease tumor size when transfected rat and human glioblastoma cells are implanted intracerebrally and release such factors.[57] Apoptosis-related genes, such as p53, have been demonstrated to slow tumor cell growth when transduced using adenovirus vectors.[58] Finally, chemo- or radio-sensitizing genes, which manipulate the cell cycle, have been shown to prolong survival in animals when successfully transduced in the presence of chemotherapy or radiation.[59,60] Genetic analysis of
such tumors now lies at the forefront of such progress as recent advances in DNA sequencing technology now provide the opportunity to survey mutational changes in cancer in a comprehensive manner, providing additional cellular targets for future gene therapy.\[61]\n
CONCLUSION

Brainstem tumors are heterogeneous group of neoplasms that are treated based on their location and imaging characteristics. Diffuse pontine gliomas comprise the majority of brainstem tumors, respond poorly to surgery, and carry a poor prognosis. Focal brainstem tumors are less common but are amenable to surgical resection with good overall prognosis. Future treatments of diffuse and infiltrative brainstem tumors will depend on an increased understanding of their genetic makeup and the success of drug delivery therapies.

REFERENCES

How to cite this article: Recinos PF, Rahmathulla G, Jallo GI, Recinos VR. Brainstem tumors: Current management and future directions. Indian J Neurosurg 2012;1:48-53.

Source of Support: Nil, Conflict of Interest: None declared.