Subtemporal keyhole approach to Meckel’s cave epidermoid cyst: Case report and review of literature

Qing Lan, Jeffrey Tanudjaja, Ai Lin Chen
Department of Neurosurgery, The Second Affiliated of Soochow University, Suzhou, China

ABSTRACT

We report the first case of subtemporal keyhole surgery approach with neuronavigation and endoscopy, for total resection of an uncommon case of epidermoid cyst of the Meckel’s cave in a 43-year-old woman who presented with paroxysmal headache and diplopia. Magnetic resonance imagines revealed the tumor location on the right area of the cavernous sinus. Postoperative examinations showed complete recovery of symptoms.

Key words: Epidermoid cyst, Meckel’s cave, subtemporal keyhole approach

INTRODUCTION

Intracranial epidermoid tumors are relatively uncommon and benign congenital lesions that constitute approximately 0.2-1.8% of all intracranial tumors. They are predominantly located lateral in position, most often in the parapontine area, including the cerebellopontine angle and the parapituitary region. Only few cases of epidermoid tumors involving the Meckel’s cave have been reported. There has been no mention of keyhole approach with the aid of neuronavigation and endoscopy in resection of the tumor. We present the first case of subtemporal keyhole surgical approach with the aid of neuronavigation and endoscopy for epidermoid cyst located in the right Meckel’s cave.

CASE REPORT

A 43-year-old woman presented with a mild paroxysmal headache accompanied with decreased vision and diplopia for 40 days. Neurological examination showed decreased vision due to myopia, diplopia and hemianopia of the right eye’s temporal quadrant. A magnetic resonance imagines (MRI) studies showed a 17 mm × 22 mm × 16 mm lesion originating at trigeminal ganglion [Figure 1]. The lesion showed adhesions to the cavernous sinus and compression of the internal carotid artery of the cavernous segment.

The three aims of the surgical treatment were to alleviate the patient’s symptoms, total resection of the tumor, and minimal surgical complications and scar. This led to our choice of keyhole approach assisted by neuronavigation and endoscopy for complete removal of the tumor.

Lumbar cerebrospinal drainage was placed and 100 ml of mannitol was given to facilitate the operative exposure. A 5 cm straight incision above the right zygomatic arch was made and temporal muscle retracted to expose the skull. The zygomatic arch was not removed. Neuronavigation was used to locate the lesion, which was beneath the branches of the trigeminal nerve. The tentorium and the outer layer of the Meckel’s cave were dissected to expose the tumor. With the aid of endoscopy, incision of the dural capsule revealed a pearly mass characteristic of an epidermoid cyst. The cystic content was soft in texture, with greish yellow sediment and calcification. It was removed with suction and the area was repeatedly washed out with normal saline to minimize the chance of potential aseptic meningitis. Outer layer dura of the Meckel’s cave was repaired with an artificial dura—which we believed could minimize adhesions of the trigeminal nerve with the surrounding tissue, leading to trigeminal neuralgia, as well as reduce the possibility of cyst contents in the subarachnoid space.

The postoperative course was uneventful and neurological examination revealed complete relief from
symptoms. A follow-up MRI confirmed total tumor removal [Figure 2]. Histological examination confirmed that the tumor was an epidermoid cyst composed of necrotic keratinized mass and flattened squamous epithelium [Figure 3].

DISCUSSION

Epidermoid cysts are benign, congenital, true ectodermal inclusion tumors, lined by an epithelium and are not considered true neoplasm. Epidermoid cysts stem from ectopic multipotential ectodermal cells that are carried along with the internal migration of the otic capsule and retained within the neural groove at the time of closure at a gestational age of 3-5 weeks.\(^5\,^7\,^9\)

Epidermoid masses are seen as low density lesions on computed tomography scans with minimal contrast enhancements due to their low vascularity. On MRI, epidermoids usually show an isointense or hypointense signal relative to the gray matter on T1-weighted images and a hyperintense signal relative to the cerebrospinal fluid on T2-weighted images. On fluid-attenuated inversion recovery images, epidermoids became hyperintense and diffusion-weighted images (DWI) displayed bright appearance of epidermoid cyst, which was helpful in assessing residual tumors after operation.\(^8\,^{10}\)

According to Gharabaghi et al., epidermoid cysts involving the cavernous sinus can be divided into three categories: Intracavernous, interdural and extracavernous. Intracavernous epidermoid cysts are located within the venous channels of the cavernous sinus between the medial wall and the inner layer of the lateral wall of the cavernous sinus. These tumors tend to wrap around the internal carotid artery and compress the cranial nerves. Interdural epidermoid cysts are located between the inner and outer layer of the lateral wall of the cavernous sinus. Extracavernous epidermoid cysts are frequently located in the Meckel’s cave, arising from the petrous apex and invade or compress the cavernous sinus. Tatagiba et al.\(^4\) stated that some neural crest cells, which developed into skin, seem to remain entrapped in the arachnoid layer between the lateral walls of the cavernous sinus during the incomplete maturation stage. Therefore, this resulted in the development of epidermoid lesions.

In our case, the MRI showed an enlargement of the Meckel’s cave area, which may suggest the location of the tumor. The initial MRI diagnosis for this patient was trigeminal schwannoma. It had similar radiological features to epidermoids\(^5\,^8\,^{10}\) but since the MRI T1-weighted contrast images showed no contrast enhancement and DWI images demonstrated restricted diffusion in the region of the lesion, the imaging was suggestive of extracavernous epidermoid cysts.

The different surgical approaches for tumors of the Meckel’s cave are summarized in Table 1. The most common approach includes the frontotemporal approach, pterional approach, zygomatic approach, orbitozygomatic
Table 1: Summary of different surgical approaches in Meckel’s cave epidermoid

<table>
<thead>
<tr>
<th>Case number</th>
<th>Author</th>
<th>Age/sex</th>
<th>Site of lesion</th>
<th>Main symptoms</th>
<th>Approach/resection grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kline and Galbraith 1981[11]</td>
<td>51/male</td>
<td>Right Meckel’s cave</td>
<td>Dysfunction of CN 3, 5; 1st and 2nd branch, 6</td>
<td>Frontotemporal/subtotal</td>
</tr>
<tr>
<td>2</td>
<td>Sepehrnia et al. 1991[12]</td>
<td>-/-</td>
<td>Petrous apex</td>
<td>Headache; dysfunction of CN 3, 5</td>
<td>Combined retromastoid subtemporal/total</td>
</tr>
<tr>
<td>4</td>
<td>Nadkarni et al. 2000[8]</td>
<td>27/female</td>
<td>Right Meckel’s cave</td>
<td>Dysfunction of CN 5</td>
<td>Subtemporal interdural/total</td>
</tr>
<tr>
<td>6</td>
<td>Furtado and Hegde 2009[7]</td>
<td>25/female</td>
<td>Left petrous apex</td>
<td>Trigeminal neuralgia</td>
<td>Subtemporal extradural with neuronavigation/total</td>
</tr>
<tr>
<td>7</td>
<td>Arai et al. 2010[12]</td>
<td>27/female</td>
<td>Right Meckel’s cave</td>
<td>Headache; right face numbness</td>
<td>Orbito-zygomatic extradural with endoscopy/total</td>
</tr>
<tr>
<td>8</td>
<td>Present study</td>
<td>43/female</td>
<td>Right Meckel’s cave</td>
<td>Headache; diplolia</td>
<td>Keyhole subtemporal extradural with neuronavigation and endoscopy/total</td>
</tr>
</tbody>
</table>

CN - Cranial nerve

CONCLUSION

We believe that this is the first case of keyhole approach with the aid of neuronavigation and endoscopy for Meckel’s cave epidermoid cyst. It has clearly shown its advantages in being a minimally invasive procedure that allows total removal of intracranial epidermoid cystic content and its capsule. Thus subtemporal keyhole approach with neuronavigation and endoscopy can be considered for future surgical treatment of epidermoid cyst located in the Meckel’s cave.

REFERENCES

12. Sepehrnia A, Samii M, Tatagiba M. Management of intracavernous