Neurothekeoma of petrous apex: A rare entity

Zarina Abdul Assis, Sunitha P. Kumaran, Nandita Ghosal, Saikiran Narayanan, Sanjaya Viswamitra
Departments of Radiology, Pathology and Neurosurgery, Sri Sathya Sai Institute of Higher Medical Sciences, Whitefield, Bangalore, Karnataka, India

ABSTRACT

Intraosseous nerve sheath tumors are very rare tumors accounting for lesser than 0.2% of primary bone tumors. We present an 18-year-old female who presented with left facial paresis for the last 1 year. Magnetic resonance imaging (MRI) demonstrated expansile, multiseptated, enhancing bony lesion in the left petrous apex. There was also abnormal enhancement of the 7-8th nerve complex within the internal auditory canal. Tumor was excised by subtemporal extradural approach. The lesion was diagnosed as intraosseous neurothekeoma on histopathology. This is an extremely rare tumor and its MRI appearance in this location is being described for the first time in literature.

Key words: Expansile, lytic, intraosseous, neurothekeoma, petrous apex

INTRODUCTION

Petrous apex lesions can be categorized as non-neoplastic, primary neoplastic and secondary neoplastic lesions. Primary neoplastic lesions of the petrous apex are relatively rare. Intraosseous nerve sheath tumor of the petrous apex is extremely rare. Imaging of only two cases of petrous apex intraosseous schwannoma have been reported in literature in the past.[1,2] We hereby present the magnetic resonance imaging (MRI) features of the first case of petrous apex intraosseous neurothekeoma (i.e., schwannoma with predominant myxomatous degeneration). Our case also showed that abnormal enhancement of the ipsilateral 7th and 8th cranial nerves, which to the best of our knowledge, is also being reported for the 1st time in the literature.

CASE REPORT

An 18-year-old female patient presented with the history of deviation of face to right side and inability to close the left eye for 1 year. Examination revealed left lower motor neuron facial paresis. Rest of the neurological and clinical examination was normal.

MRI brain demonstrated a well-defined, lobulated, multicycstic, extra-axial bony lesion in the region of the petrous apex. The lesion showed predominant T2 hyperintensity, partially inverting on fluid-attenuated inversion-recovery (FLAIR) sequences [Figure 1a and c]. On T1-weighted sequence, the lesion showed hypointense signals [Figure 1b]. There was no evidence of restriction of diffusion. The cortex of the petrous bone appeared to be thinned out, but intact. Posteriorly, the lesion was seen to abut the cochlea. The semicircular canals were not involved. The middle ear structures and mastoid air cells appeared normal. Anteriorly, the lesion was extending into the Meckel’s cave. On post-contrast study, the lesion showed heterogeneous enhancement [Figure 1d]. Another peculiar finding on post-contrast study was abnormal enhancement of the left 7th and 8th nerve complex within the internal auditory canal (IAC) [Figure 2]. The left internal carotid artery was displaced medially by the lesion, without any luminal compromise. Based on the MRI findings, differential diagnosis of chondromyxoid fibroma, giant cell tumor, aneurysmal bone cyst and chondrosarcoma were considered.

Lesion was excised by subtemporal extradural approach. The lesion was completely extradural destroying the petrous part of left temporal bone. Near total excision of the lesion was performed except for the part diffusely involving the petrous apex. Post-operative course was uneventful except for persisting 7th nerve paresis.

Address for correspondence: Dr. Zarina Abdul Assis, Department of Radiology, Sri Sathya Sai Institute of Higher Medical Sciences, EPIP Area, Whitefield, Bangalore - 560 066, Karnataka, India. E-mail: drzarinazazia@gmail.com

Access this article online

Quick Response Code:

Website: www.ijns.in

DOI:
10.4103/2277-9167.118135
Histopathology sections examined from the lesion showed a tumor composed of prominent myxoid extracellular matrix with scattered spindle shaped cells, some showing serpentine nuclei and wispy cytoplasmic processes. Interspersed thin capillaries were seen; however, no thick walled vessels were seen. No chondroid matrix was seen. Immunohistochemistry for S-100 protein was positive in the tumor cells [Figure 3]. On the overall histomorphology, a diagnosis of intraosseous neurothekeoma was rendered.

DISCUSSION

Expansile lytic lesions of the petrous apex are commonly encountered in day-to-day clinical practice. Primary neoplasms of the petrous apex are rare and include eosinophilic granuloma, chondroma, chondrosarcoma, fibrous dysplasia, chordomyxoid fibroma, chordoma etc., most of which would present as expansile lytic lesions.[3]

Diagnostic imaging with computed tomography (CT) and MRI is highly useful in characterization of these lesions and usually provide a definitive diagnosis prior to histological examination.[3,4] Intraosseous nerve sheath tumors are rare benign neoplasms accounting for < 0.2% of primary bone tumors.[5] Schwannomas usually arise from sensory nerves.[6] Intraosseous schwannomas is thought to originate from schwann cells of the paravascular nerves that travel with the nutrient arteries.[7] There is low density of sensory nerves within bone, accounting for the rarity of intraosseous schwannomas.[8] However, it has been observed that there is a relatively high density of sensory nerve fibers in the head and neck regions.[9] Mandible is the most common site reported.[10] Other less common reported sites include humerus,[11] femur,[12] tibia,[13] ulna,[14] vertebral bodies,[15] rib and sacrum.[5] Primary intraosseous schwannoma in the petrous apex is believed to arise from the deep petrosal nerve of the periarterial carotid plexus.[16]

A review of the literature revealed only two cases of primary petrous apex intraosseous schwannomas reported in the past by Solodnik et al.[1] in 1986 and Goiney et al.[2] in 2011. Solodnik et al. described only the CT findings. Goiney et al. described both CT and MRI findings in a 48-year-old female who presented with headache and decreased sensation on the left side of the face, which underwent gross total excision with subtemporal approach. They concluded that intraosseous schwannoma should be considered as differential diagnosis in case of a T2 hyperintense, T1 isointense, expansile, minimally erosive bony lesion showing solid homogeneous enhancement. There was no post-operative neurological deficit in the patient as in our case.

Neurothekeoma is nothing but a benign nerve sheath tumor with extensive myxoid degeneration that commonly arises from small cutaneous nerves and has a predilection for the head, neck and shoulders.[17] Until date only four cases of intracranial neurothekeomas (all intraosseous) have been reported, located in the preoptic cistern,[18] posterior fossa,[19] paraseptal region[20] and deep white matter in the middle cranial fossa.[21] All these cases showed predominant T1 hypointensity and T2 hyperintensity with heterogeneous
post-contrast enhancement. There was no mention of the adjacent cranial nerve enhancement in any of these reports.

We report the MRI features of the first case of intracranial intraosseous neurothekeoma. Our case showed a similar pattern of imaging findings as the previously reported extraosseous neurothekeomas, with T1 hypointense and T2 hyperintense signals and heterogeneous post-contrast enhancement. However, our case showed a multicystic-septated appearance, which is not described in earlier cases. Furthermore, the presence of associated ipsilateral 7th and 8th cranial nerves enhancement observed in our case is a new finding. Reason for this type of nerve enhancement is not clear. The association between the tumor and cranial nerve enhancement may be incidental. However, we postulate that this pattern of enhancement could probably suggest reactive inflammatory changes in the parent nerve (in this case the facial nerve) or retrograde spread of the tumor along the neural axis (less likely as it is a benign entity) or presence of multiple nerve sheath tumors.

Although no specific pathognomonic MRI feature of intraosseous neurothekeoma were seen, which can help to differentiate this condition from others; however, expansile lytic, heterogeneously enhancing cystic bony lesion along with enhancement of the adjacent cranial nerves should likely suggest the possibility.

Complete surgical excision or curettage is the treatment of choice for intraosseous nerve sheath with less recurrence rates. Near total excision of the lesion was performed in the present case without any additional morbidity.

CONCLUSION

Intraosseous neurothekeoma is an extremely rare entity. It can be considered in the differential diagnosis for petrous apex expansile lytic lesions. It has non-specific MRI features. Associated 7th and 8th cranial nerve enhancement in the IAC could suggest the probable diagnosis.

REFERENCES


How to cite this article: Assis ZA, Kumaran SP, Ghosal N, Narayanan S, Viswamitra S. Neurothekeoma of petrous apex: A rare entity. Indian J Neurosurg 2013;2:210-2.

Source of Support: Nil, Conflict of Interest: None declared.