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glutamate level in TBI is cleared within 5 min, the effect of 
glutamate receptors antagonists remains effective even after 
30 min of insult. Some authors have come up with the theory 
of spreading depression due to the sodium extrusion, sequelae 
of calcium influx, and subsequent hyperpolarization to the 
cause of the phenomenon.[4]

There has also been evidence that astrocytic glutamate 
transporters such as GLAST and GLT-1 and splice variant 
are downregulated shortly following the insult, which then 
precipitates glutamate-mediated excitotoxic conditions.[5] 
These insights should provide novel avenues for therapeutic 
intervention of following TBI.

Lactate Storm

The injured brain continues to produce lactate within 
minutes following severe TBI.[6,7] There is a glial–neuronal 
uncoupling resulting in a lactate storm in the already failing 
metabolic environment. Furthermore, it has been shown 
that extracellular lactate increase is independent of brain 
hypoxic ischemia in severe TBI.[8,9] There has been a number 
of studies highlighting the implication of raised lactate level 
in the cerebrospinal fluid (CSF) and the magnetic resonance 
spectroscopy and the subsequent outcome in the patients 
with TBI.[10-12]

Introduction

Traumatic brain injury (TBI) is a major public health issue 
worldwide.[1] According to the World Health Organization 
report, TBI is going to surpass many other diseases, such as 
ischemic heart and cerebrovascular disease, as a major cause of 
death and disability by 2020 AD.[2] Research in the management 
of TBI with therapeutic options for neuroprotection has been 
rigorously pursued over the last 40 years.[3] Herein, we try to 
enlighten on the newer avenues on the pathophysiology of 
TBI and thereafter highlight on the probable role of opening 
up the paravascular pathways, which might add to our already 
existing armamentarium on the management of TBI.

Glutamate Excitotoxicity

There has been a long-standing notion that excitatory 
amino acid efflux is a major contributor to the development 
of neuronal damage subsequent to traumatic injury. High 
extracellular glutamate is thought to initiate and accelerate 
the process of apoptosis and parthanatos. However, this theory 
does not withstand scientific scrutiny because the extracellular 
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It is thereby a safe option to safely chelate the excess lactate,[13] 
buffer the pH effect[14] or inhibit glial metabolism[15,16] as 
opposed to further administering lactate as some of the 
contemporary research have been suggesting.[17,18] Lactates, 
because of its role as a supplementary fuel to the brain, can a 
friend only in an aerobic environment.[19] Lactate substitution 
is, in fact, a foe in such a lethal and stormy metabolic milieu, 
and can paradoxically lead to the unsalvageable brain.

Taupathy

There has been a recent upsurge in the link between 
Glymphatic pathways in the brain and its association with 
tauopathies following TBI.[20,21] This pathway facilitates the 
clearance of interstitial solutes, including amyloid, from the 
brain. One study has recently verified in mice that extracellular 
tau is cleared from the brain along these paravascular 
pathways mediated by Aquaporin-4 channel.[20] After TBI, 
glymphatic pathway function was significantly impaired for at 
least 1 month postinjury, thereby promoting the development 
of neurofibrillary pathology and neurodegeneration in the 
posttraumatic brain. These findings have provided newer 
insights to the fact that chronic impairment of glymphatic 
pathway function after TBI may be a key factor that renders 
the posttraumatic brain vulnerable to tau aggregation and the 
onset of neurodegeneration thereafter.

Immunoexcitotoxicity

TBI can prime microglia.[22,23] These leads to its activation to 
either of neurotrophic, neurodestructive, or intermediate 
states each responding to a different set of membrane 
signals, which can be time and cytokine dose dependent.[24] 
The release of chemokines like monocyte chemoattractant 
protein-1 also stimulate the recruitment of peripheral 
monocytes/macrophages to the central nervous system, 
especially via the circumventricular organs.[25] At the face of 
the excitotoxic environment, microglial cells release NO and 
interleukin-1b thereby contributing to subacute neuronal 
degeneration.[26,27]

Normally, the activated microglial cells go into reparative 
ramified mode wherein they secrete neurotrophins and the 
anti-inflammatory cytokines helping in the repair process. 
Repeated trauma leads to priming of these activated microglia 
cells to become hyper-reactive, releasing much higher 
concentrations of inflammatory cytokines and excitotoxins 
than are normally released.[28]

It has been proposed that with chronic microglial 
neurodegeneration, this switching process to ramified 
form does not occur, leading to progressive and prolonged 
neuronal injury.[29] Gliosis and the scar associated with the 
neurodegeneration lead to the impairment of the paravascular 
clearance pathway of the amyloid and the tau proteins. 

Amyloid deposits are known to occur rapidly after TBI and 
persist in 30% of severe head trauma cases, even in children.[29]

Hemodynamic Alteration

There are specific hemodynamic alterations following the 
TBI.[30] In the first 24 h, there is oligemia attributable to cellular 
edema, sympathetic adrenergic surge at the face of trauma, and 
the microvascular thrombi. In the subsequent 3 days, there is 
a phase of hyperemia because of vasomotor paralysis, luxury 
perfusion, and the hyperglycolysis. Then from the 4th day to 
following 2 weeks, the phase of vasospasm sets in because of 
the degraded blood products such as deoxyhemoglobin and 
bilirubin. Hence, the concept of correct fluid resuscitation and 
replacement has a paramount importance while managing 
patients with TBI. Fluids should be restricted in the hyperemic 
phase whereas induced hypertension, hemodilution, and 
hypervolemia should be instituted during the phase of 
vasospasm.

Future Directives

Role of opening the cisternal webs in the brain
The implications of opening the cisterns in TBI, though 
demanding, can have ripple effects in the management of 
TBI.[31,32] It immediately lax the tight brain due to egress of the 
CSF. Furthermore, it improves the compliance of the vessels 
and reduces the risk of subsequent vasospasm clearing the 
cisternal and subarachnoid blood invariably associated with 
TBI. Cisternal drain helps in clearing away the lactate and 
tau proteins thereby reducing the hazardous cellular milieu 
and also minimizing the risk of subsequent development of 
neurodegenerative lesions. Hence, it may be the time we pass 
on the baton to this new therapeutic armamentarium, that 
targets the paravascular pathways, in our quest to conquer 
the silent epidemic of TBI.
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