to the right. Visual acuity and visual field examination were normal. There were no other cranial nerve, motor or sensory deficits. Other system examinations were within normal limits. Magnetic resonance imaging of the brain showed an expansile mass lesion involving entire clivus that was T1- and T2-isointense and showed contrast enhancement. There was erosion of posterior wall of the sphenoid sinus with lesion bulging into the sinus. Pituitary was normal [Figure 1]. With a preoperative diagnosis of clival chordoma infiltrating into the sphenoid sinus, the lesion was decompressed by subfrontal trans basal approach.

Microscopy showed respiratory epithelium with an underlying neoplasm composed of sheets of plasma cells with a moderate amount of cytoplasm and eccentric round nuclei [Figure 2]. Cells were positive for CD 138, CD 38 and CD 56, while negative for CD 20, cytokeratin and synaptophysin. Ki 67 (MIB) labeling index was <5%. Cells were kappa light chain positive and negative for lambda light chains thus establishing monoclonality . A diagnosis of plasmacytoma of clivus was given, and workup for myeloma was suggested.

Patient underwent whole-body X-ray studies, serum and urine electrophoresis, complete blood counts, serum calcium levels and a bone marrow biopsy, as part of myeloma investigations, which were negative.

Patient received radiotherapy (50 gray given in 25 fractions) and is now 8 months postoperative and doing well. The right side lateral rectus palsy is still persisting.

Discussion
Plasma cell tumors affecting the skull base generally appear as a manifestation of underlying multiple myeloma (MM). Solitary plasmacytoma of the skull base is rare with <10 reported cases of clival plasmacytoma in literature.[2,5] A brief summary of the cases is provided in Table 1. Clival plasmacytoma may represent an SBP or may be involved by EMP involving the submucosa of the sphenoid sinus as in our case.
By definition, patients with solitary plasmacytoma do not have evidence of underlying systemic disease at the time of diagnosis.\(^1\)

In general, solitary intracranial plasmacytomas remain asymptomatic for a long period of time. The symptoms are related to compression of cranial nerves and headaches. Tumors in the clivus produce diplopia due to compression of the sixth cranial nerve, which has the longest path in this anatomic region. This was true in our case also.\(^2\)

Other cranial nerves affected include II, V, VII and VIII, according to the order of frequency. Rare case reports of compression of the posterior inferior cerebellar artery leading to a lateral medullary and bulbar syndrome are also on record.\(^3\)

A radiological differential of a lesion in clivus includes chordoma, chondrosarcoma, meningioma, invasive pituitary adenoma, lymphoma, metastasis, and osteosarcoma. Positron emission tomography with fluorodeoxyglucose has been found to aid in the detection of unsuspected sites of medullary and extramedullary disease.\(^5\)

Due to the rarity of plasmacytoma at the skull base and the nonspecific clinical and radiological findings, in most cases

![Figure 1](image1.png)

Figure 1: (a) Magnetic resonance imaging brain shows an expansile lesion involving entire clivus and eroding the posterior wall of sphenoid sinus. (b) Sagittal view of the lesion

![Figure 2](image2.png)

Figure 2: (a) Microscopy shows a neoplasm with overlying respiratory epithelium ×40, (b) sheets of plasma cells ×400 and (c) high power view of plasma cells ×1000. (a-c: H and E) with moderate amount of cytoplasm and eccentric round nuclei

<table>
<thead>
<tr>
<th>Authors</th>
<th>Age</th>
<th>Sex</th>
<th>Clinical features</th>
<th>Radiology findings</th>
<th>Diagnosed by</th>
<th>Treatment</th>
<th>Follow-up</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vera et al. 1980(^6)</td>
<td>49 years</td>
<td>Male</td>
<td>Incidental</td>
<td>Destructive lesion</td>
<td>Biopsy</td>
<td>Radiation</td>
<td>14 months</td>
<td>doing well</td>
</tr>
<tr>
<td>Bindal et al. 1995(^2)</td>
<td>47 years</td>
<td>Female</td>
<td>Headache</td>
<td>Not available</td>
<td>Not available</td>
<td>No recurrence</td>
<td>Stable for 25 years</td>
<td></td>
</tr>
<tr>
<td>Goyal et al. 2006(^1)</td>
<td>60 years</td>
<td>Male</td>
<td>Headache, diplopia-2 months</td>
<td>Expansile lytic lesion</td>
<td>Biopsy</td>
<td>Not available</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Mahale et al. 2007</td>
<td>58 years</td>
<td>Male</td>
<td>Decreased hearing, earache-1 month</td>
<td>Destructive lesion with calcification</td>
<td>Cytology</td>
<td>Not available</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Liu et al. 2010</td>
<td>54 years</td>
<td>Female</td>
<td>Hemianopia-40 days</td>
<td>Lytic lesion</td>
<td>Biopsy</td>
<td>Subtotal resection followed by radiation</td>
<td>22 months</td>
<td>doing well</td>
</tr>
<tr>
<td>Guinto-Balanzar et al. 2012</td>
<td>66 years</td>
<td>Female</td>
<td>Headache, diplopia-3 months</td>
<td>Homogenously enhancing lesion</td>
<td>Biopsy</td>
<td>Complete resection</td>
<td>Died 3 months after surgery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61 years</td>
<td>Male</td>
<td>Headache, tinnitus-6 months</td>
<td>Infiltrating lesion</td>
<td>Biopsy</td>
<td>Subtotal resection followed by chemo-radiation</td>
<td>3 years</td>
<td>doing well</td>
</tr>
<tr>
<td>Liu and Qiu et al. 2012</td>
<td>40 years</td>
<td>Male</td>
<td>Horizontal diplopia</td>
<td>Homogenously enhancing expansile lesion</td>
<td>Endoscopic biopsy</td>
<td>Radiation, followed by high dose steroids</td>
<td>4 months later, PET scan showed increased uptake, underwent gamma knife surgery</td>
<td></td>
</tr>
<tr>
<td>Present case</td>
<td>55 years</td>
<td>Male</td>
<td>Diplopia</td>
<td>Expansile isointense lesion</td>
<td>Biopsy</td>
<td>Subtotal excision followed by radiation</td>
<td>8 months</td>
<td>doing well</td>
</tr>
</tbody>
</table>

MM – Multiple myeloma; PET – Positron emission tomography
the diagnosis is obtained through histopathology, as in our patient also.

Histologically, plasmacytomas are characterized by a diffuse or sheet-like proliferation of plasma cells with varying degrees of maturity and atypia. The nuclei are oval to round and eccentrically located with a dispersed (“clockface”) nuclear chromatin pattern and a clear or halo area. Neoplastic nature of plasma cells is established by proving the monoclonality.

This case is presented to highlight that though rare, plasmacytoma should be considered in the differential diagnosis of skull base lesions associated with early involvement of cranial nerves. All solitary plasmacytomas patients should be evaluated to rule out underlying MM and thoroughly followed up for any signs of evolution to MM.

Average survival of patients with MM is 3 years, whereas patients with a solitary lesion have a better prognosis. EMP progressing to MM is <30% with a 10-year disease-free period of 70%. In SBP, however the likelihood of progression to MM is >50% with a 10-year disease-free period of only 16%.[3]

References

Source of Support: Nil, Conflict of Interest: None declared.