The solitary fibrous tumor (SFT) of central nervous system is rare. Herein, a case of solitary fibrous tumor arising from sellar region is described. A 60-year-old man underwent subtotal excision of the tumor because of extensive infiltration of optical and vascular structures. In view of the presence of residual tumor, he was treated with adjuvant radiation therapy. After a follow-up period of 1 year, there was no progression of the lesion evident on magnetic resonance imaging of the brain. Solitary fibrous tumor should be considered as one of the differential diagnosis of a mass lesion arising in sellar region. Immunohistochemistry with CD34 is valuable for discerning the diagnosis. Complete surgery should be the goal of treatment and adjuvant radiation therapy may be considered for residual or recurrent disease.

Key words: Adjuvant radiotherapy, intracranial neoplasms, sella turcica, solitary fibrous tumor.
Sahai, et al.: Solitary fibrous tumor

Asian Journal of Neurosurgery
Vol. 11, Issue 4, October‑December 2016

...Based on the aforementioned findings, a pathological diagnosis of SFT was made. The tumor showed an MIB-1 labeling index of 5%.

After the surgery, his visual examination showed improvement in the right eye vision. MRI of the brain was performed after 5 weeks of the surgery. It showed an enhancing lesion of 2.6 × 2.5 × 2.0 cm dimension in the sellar region. In view of the presence of residual tumor, post-operative radiotherapy was planned for the patient. Consequently, a dose of 50 Gy in 25 fractions over 5 weeks was delivered. The three-dimensional conformal radiation therapy (3-DCRT) technique using 6 MV X-rays was employed for the treatment. After a follow-up period of 1 year, there was no progression of the lesion evident on MRI of brain. In addition, he had improvement in bilateral vision.

Discussion

The SFTs are solitary, localized, firm and benign mesenchymal tumors. They may originate from perivascular connective tissue, the pia-arachnoid or dural fibrocytes. The important histological characteristics are alternating hypercellular and hypocellular sclerotic foci with short, spindle or ovoid cells in a haphazard, storiform or fascicular arrangement. There is close intertwining of thin or thick collagen fibrils with the spindle cells. Immunohistochemical studies reveal strong diffuse positivity for vimentin and CD34. Dural-based SFT may mimic fibrous meningioma and should be differentiated from the same. The SFT is negative for EMA, S100 and muscle markers. In addition, the staining for p53, MIB-1 and cyclin D1 may be of interest in assessing the biological potential of this tumor. On MRI scan, the SFT is visualised as isointense to adjacent brain on T1WI and iso- or hyperintense on T2WI with homogenous enhancement. With regard to the present case study, the tumor showed isointensity on T1WI and T2WI with enhancement.

Bisceglia et al. reviewed the world literature on SFTs of the central nervous system from August 1996 to July 2011. The clinico-pathological features were assessed. The anatomical distribution of the reported 220 cases revealed that the majority of tumors were intracranial, and just over one-fifth were intraspinal. The sites of involvement were as follows in decreasing frequency: supratentorial and infratentorial compartments, ponto-cerebellar angle, sellar and parasellar regions, and cranial nerves. Although most SFTs of the central nervous system were dural based, a small subset presented in subpial, intraparenchymal, or intraventricular location. Some tumors involved the nerve rootlets with no dural connection. Immunohistochemistry clinched the diagnosis, distinguishing the tumor from meningioma, schwannoma, neurofibroma, or hemangiopericytoma. The MIB-1 labeling index proved to be of prognostic significance.

Although SFT is a benign tumor, metastases and recurrences have been reported. In the case series of SFT published by Chen et al., the patients treated with subtotal tumor resection (STR) experienced tumor recurrence or progression. However, the patients treated with adjuvant radiosurgery after STR did not recur or progress. The optimal treatment of SFT is complete surgical excision, which was not possible in the present case.
because of extensive tumor infiltration of optical and vascular structures. Since the patient had residual tumor, adjuvant radiation therapy was given. He did not show any evidence of tumor progression on the imaging performed after one year of therapy.

SFT should be considered as one of the differential diagnosis of a mass lesion arising in sellar region. Immunohistochemistry with CD34 is valuable for discerning the diagnosis. Complete surgery should be the goal of treatment and adjuvant radiation therapy may be employed for residual or recurrent disease.

References


How to cite this article: Sahai P, Singh G, Mondal D, Suri V, Julka PK. Solitary fibrous tumor of the sellar region treated with adjuvant radiation therapy. Asian J Neurosurg 2016;11:449.

Source of Support: Nil, Conflict of Interest: None declared.