Amplatzer vascular plug as an embolic agent in different vascular pathologies: A pictorial essay

Jonathan Tresley, Shivank Bhatia, Issam Kably, Prasoon Poozhikunnath Mohan, Jason Salsamendi, Govindarajan Narayanan

Department of Diagnostic and Vascular/Interventional Radiology, Jackson Memorial Hospital, Miami, Florida, USA

Correspondence: Dr. Jonathan Tresley, Department of Diagnostic and Vascular/Interventional Radiology, Jackson Memorial Hospital, 1611 NW 12th Ave, West Wing 279, Miami, Florida - 33136, USA. E-mail: jtresley@med.miami.edu

Abstract

The Amplatzer Vascular Plug (AVP) is a cylindrical plug made of self-expanding nitinol wire mesh with precise delivery control, which can be used for a variety of vascular pathologies. An AVP is an ideal vascular occlusion device particularly in high-flow vessels, where there is high risk of migration and systemic embolization with traditional occlusion devices. We performed 28 embolizations using the AVP from 2009 to 2014 and achieved complete occlusion without complications.

Key words: Amplatzer vascular plug; embolization device; vascular embolization

Introduction

In the 1990s, Kurt Amplatz developed a novel vascular “plug” which allows for minimally invasive closure of atrial septal defects.[1] In 2005, the same idea was used in the development and subsequent Food and Drug Administration (FDA) approval of vascular plugs for peripheral arterial and venous occlusion. Traditional options for vascular occlusion included mechanical occlusion devices such as coils or detachable balloons, liquid embolic agents, particulate embolic agents, and sclerosing agents. Precise control of the location of embolization is often not possible with these agents. Also, the majority of traditional embolic agents cannot be retrieved once deployed or injected into the circulation.[2] The vascular plug solves many of these issues, while providing low recanalization rates. FDA premarket notification mentions the advantages of significantly shorter occlusion times, improved deployment precision without device migration, and significantly decreased recanalization rate at 2 months after the procedure with the Amplatzer Vascular Plug (AVP) compared to coil embolization.[3] An AVP also can be recaptured and repositioned, and has the potential to occlude large blood vessels which would normally require a number of coils or a combination of embolic agents.[4,5] This pictorial essay will discuss the use of AVP (St Jude Medical, Inc, St Paul, MN, USA) for extracardiac indications at our institution and review the published literature.

Device Description and Deployment Technique

AVP is a cylindrical plug made of self-expanding nitinol wire mesh, with sizes ranging from 4 to 16 mm in 2 mm increments. It is deployed through sheaths ranging from
3 to 8 French. The first generation has a single-lobe design for rapid occlusion in short vessel landing zones. The second generation is multi-layered, created for enhanced conformability to the variable vessel landing zones. The fourth generation has recently been approved by the FDA and can be deployed through a microcatheter.\(^6,7\) There are radiopaque bands at each end of the plug. The proximal end has a stainless steel microscrew that keeps the plug attached to the stainless steel delivery cable. The delivery cable with the plug attached comes preloaded within an introducer sheath. The device can be then introduced into the delivery catheter. The plug can be withdrawn and repositioned through the catheter before detachment. The plug is detached by rotating the delivery cable in a counterclockwise direction, which unscrews the cable from the vascular plug. The manufacturer recommends oversizing the AVP by 30-50% to ensure proper fit within the vessel, limiting the potential complication of device migration.\(^6\) Stasis is achieved by thrombus formation within and around the plug.

Our Experience

All instances of the use of an AVP in different clinical scenarios in this series were in accordance with the FDA approval as an arterial or venous occlusion device. The retrospective analysis was approved by our institutional review board (IRB).

In our experience, eight attending vascular and interventional radiologists were involved in 28 embolizations using the AVP from 2009 to 2014 [Table 1]. An AVP with diameter 30-50% greater than the diameter of the target vessel was chosen in all cases. Patients’ age ranged from 13 to 70 years (average 48 years). Thirteen patients were male and 15 were female. The right common femoral artery was accessed in 17 patients, the right common femoral vein in 3 patients, the right internal jugular vein in 1 patient, the right subclavian vein and brachiocephalic vein junction in 1 patient, and the arteriovenous fistula directly in 6 patients [Table 2]. Of the 17 arterial punctures, 13 were closed with an Angioseal closure device. The remaining three arterial punctures and the venous punctures were closed with manual compression. Two of the six arteriovenous fistula accesses were closed with purse string suture technique. The AVP embolization resulted in complete distal vascular stasis in all patients, and we experienced no minor or major complications.

Arteriovenous Fistula Closure

Table 1: Number of patients undergoing amplatzer vascular plug embolization for various indications

<table>
<thead>
<tr>
<th>Indication for procedure</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of steal phenomenon</td>
<td>11</td>
</tr>
<tr>
<td>Preoperative embolization</td>
<td>4</td>
</tr>
<tr>
<td>Variceal shunt embolization</td>
<td>4</td>
</tr>
<tr>
<td>Arteriovenous fistula closure</td>
<td>3</td>
</tr>
<tr>
<td>TIPS fistula closure</td>
<td>1</td>
</tr>
<tr>
<td>Lung AVM embolization</td>
<td>1</td>
</tr>
<tr>
<td>Pulmonary arterial aneurysm embolization</td>
<td>1</td>
</tr>
<tr>
<td>Treatment of pelvic congestion syndrome</td>
<td>1</td>
</tr>
<tr>
<td>Treatment of superior vena cava syndrome</td>
<td>1</td>
</tr>
<tr>
<td>Stabilization of a traumatic organ laceration/trauma</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Access site</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right common femoral artery</td>
<td>17</td>
</tr>
<tr>
<td>Direct arteriovenous fistula</td>
<td>6</td>
</tr>
<tr>
<td>Right common femoral vein</td>
<td>3</td>
</tr>
<tr>
<td>Right subclavian vein</td>
<td>1</td>
</tr>
<tr>
<td>Right internal jugular vein</td>
<td>1</td>
</tr>
</tbody>
</table>

One patient with an arteriovenous fistula for hemodialysis access had arm pain from insufficient outflow from the upper extremities that resolved completely after closure of the left axillary artery to left axillary vein fistula [Figure 1]. Another patient had right hand ischemia that clinically improved after closure of the right brachiocephalic fistula [Figure 2]. We were able to deploy a single AVP and eliminate the steal phenomenon with immediate and lasting results at follow-up of 7 months [Figures 1 and 2]. In 2009, Bui et al. treated vascular steal related to upper extremity hemodialysis arteriovenous fistulae in five patients with AVPs and also documented immediate improvement in distal arterial flow with resolution of clinical symptoms in all patients.\(^{10}\)

AVPs are useful in the treatment of vascular shunts, particularly those with high flow or large feeding vessels, where the risk of distal embolization of coils is substantial.\(^{11-17}\) There were five cases of occlusion of arteriovenous fistula venous outflow tract collateral veins, including one brachiocephalic and two radiocephalic fistulas. In all cases, the collateral veins were successfully occluded with the AVP device, increasing the venous outflow from the fistula for hemodialysis (not shown).

In 2007, Recto et al. reported a patient who sustained two transient ischemic attacks after intravenous saline flushes flowed through a fistula between the superior vena cava and the left upper pulmonary vein. The authors prevented further neurologic events by embolizing the vascular shunt with an AVP.\(^{18}\)
In the lower extremities, there are reported cases of an iatrogenic arteriovenous fistula and a pseudoaneurysm that were successfully closed with an AVP.[19,20]

Splenic Artery Embolization

Steal phenomenon may also compromise blood flow to the transplanted liver. The splenic artery may steal blood from hepatic arteries which may already be compromised due to anastomotic stricture. Controlled embolization of the proximal splenic artery with preservation of collateral circulation to the spleen will maintain splenic perfusion while effectively shunting blood to the liver, which is evident by improved liver function tests and decrease in ascites volume in these cases. There were eight patients who underwent splenic artery embolization to increase hepatic artery flow following liver transplant [Figure 3].

In 2011, Zhu et al. reported a series of 23 cases of splenic artery steal after liver transplant, where the AVP was compared with coils, and they successfully used the AVP as their primary embolic agent in 10 cases.[21] In 2010, Maurer et al. also showed improved hepatic perfusion, decreased transaminase levels, decreased ascites, and improved platelet counts after embolization of the splenic artery with one or two AVPs for splenic artery steal in 13 patients.[22]

Another patient underwent splenic artery embolization to reduce portal venous pressures due to mesenteric vein thrombosis [Figure 4]. Two patients underwent splenic artery embolization to reduce portal pressures in order to treat variceal bleeding, with subsequent resolution of the melena and stabilization of the hemoglobin/hematocrit levels (not shown). We also utilized an AVP in the splenic artery of another patient and the coronary vein in a different patient to reduce portal pressures. Post-embolization, both patients had resolution of gastrointestinal bleeding. One patient underwent coronary vein embolization concomitantly with transjugular intrahepatic portosystemic shunt (TIPS) revision due to fundal variceal shunting and demonstrated complete occlusion of the coronary vein with improved flow through the portal vein post-embolization [Figure 5]. Our findings are compatible with those of Pattynama et al., who reported the use of AVPs in portal vein collaterals to decrease the risk of subsequent re-bleeding in eight patients.[23]

Transjugular Intrahepatic Portosystemic Shunt

In our series, one patient underwent TIPS and was later identified as having a fistula between the right posterior segmental branch of the hepatic artery and the hepatic vein. A branch of the right hepatic artery was selectively embolized with an AVP, sparing the remaining right lobe arterial supply and the cystic artery [Figure 6].

Also, TIPS may be closed using an AVP if hepatic encephalopathy severely impairs mental functioning.[11,23-25] There have been reports of non-cirrhotic portal-systemic shunts with encephalopathy that were occluded with an AVP, leading to normalization of blood ammonia levels.[26,27]
Preoperative Embolization

Four patients underwent preoperative embolization of various vessels to reduce intraoperative bleeding. The left renal artery was embolized using two AVPs in one patient with renal cell carcinoma [Figure 7]. Two patients required jump graft embolization of donor superior mesenteric artery for rejected small bowel transplants prior to enterectomy [Figure 8]. One patient with portal hypertension and thrombocytopenia underwent splenic artery embolization prior to splenectomy (not shown).

Portal vein embolization prior to hemi-hepatectomy has also been performed successfully with an AVP. Mordasini et al. in 2010 and Ringe et al. in 2007 embolized the portal vein in a total of five patients prior to right heptectomy, without complications.[25,26] In addition to decreased intraoperative blood loss, preoperative unilateral portal vein embolization also promotes segmental hypertrophy of the liver. Libicher and colleagues occluded the right portal vein using an AVP and microparticles in 10 patients and noted a 27% increase in the volume of the left lobe of the liver after 4 weeks without evidence of recanalization or migration.[29] Only one patient in the literature sustained hepatic infarction within 12 h after preoperative portal vein embolization. However, post-procedural CT scan revealed the AVP to protrude into the main portal vein causing extensive portal thrombosis. The same authors report partial recanalization of the second-order occluded portal vein in one patient with an AVP, but post-procedural CT scan revealed the AVP to completely cover the anterior portal vein branch but only partially cover the posterior portal vein branch. The authors concluded that portal vein embolization with the AVP is a safe and effective technique to induce hypertrophy of the future liver remnant.[30]

Pulmonary Arterial Aneurysm and Arteriovenous Malformation Embolization

There were two cases using an AVP in pulmonary vasculature. AVP deployment into the segmental branch of the right upper lobe pulmonary artery successfully occluded the arteriovenous malformation in one patient after failed coil embolization [Figure 9]. Another patient underwent successful occlusion of the left lower lobar pulmonary arterial aneurysm with a single AVP [Figure 10].
Pulmonary arteriovenous malformations (PAVMs) may occur in isolation or associated with Osler–Weber–Rendu syndrome or hereditary hemorrhagic telangiectasia. The goal of treating PAVMs is to prevent cerebral thromboembolism, pulmonary hemorrhage, and brain abscess, and to increase blood oxygenation by eliminating the right-to-left intrapulmonary shunt. Historically, nonoperative treatment of PAVMs included embolization with coils or detachable balloons, and has been extensively described. However, a significant limitation of coil or balloon therapy is the potential migration of these devices into the systemic circulation. The risk is higher in patients whose PAVMs are fed by large arteries with short courses. AVPs are particularly well suited to treat such PAVMs, as they can be deployed precisely and can be repositioned if necessary with little risk of systemic embolization. Our patient with multiple PAVMs failed attempted coil embolization twice with 3 mm × 3 cm microcoils. AVPs are particularly well suited to treat such PAVMs, as they can be deployed precisely and can be repositioned if necessary with little risk of systemic embolization. Our patient with multiple PAVMs failed attempted coil embolization twice with 3 mm × 3 cm microcoils. AVPs are particularly well suited to treat such PAVMs, as they can be deployed precisely and can be repositioned if necessary with little risk of systemic embolization. However, a significant limitation of coil or balloon therapy is the potential migration of these devices into the systemic circulation. The risk is higher in patients whose PAVMs are fed by large arteries with short courses. AVPs are particularly well suited to treat such PAVMs, as they can be deployed precisely and can be repositioned if necessary with little risk of systemic embolization. Our patient with multiple PAVMs failed attempted coil embolization twice with 3 mm × 3 cm microcoils. AVPs are particularly well suited to treat such PAVMs, as they can be deployed precisely and can be repositioned if necessary with little risk of systemic embolization. However, a significant limitation of coil or balloon therapy is the potential migration of these devices into the systemic circulation. The risk is higher in patients whose PAVMs are fed by large arteries with short courses. AVPs are particularly well suited to treat such PAVMs, as they can be deployed precisely and can be repositioned if necessary with little risk of systemic embolization. Our patient with multiple PAVMs failed attempted coil embolization twice with 3 mm × 3 cm microcoils. AVPs are particularly well suited to treat such PAVMs, as they can be deployed precisely and can be repositioned if necessary with little risk of systemic embolization.
Advantages

The main advantages of utilization of the AVP over traditional coils described in the literature include reduction in procedure times, reduction in materials used, ability to reposition the plug for precise deployment, reduction in radiation times, and reduction in procedure costs.\[2,3,5,6,48\] We also emergently treated a patient with subcapsular splenic traumatic hematoma by splenic artery occlusion with an AVP [Figure 12].

Complications and Difficulties

Complications arising from embolization with an AVP are uncommon in the literature, and our data demonstrate no complications in 28 embolizations. Reported complications include device migration, which is rare given the self-expanding device design that exerts a radially directed force on the vessel wall to maintain its position.\[^7^4^1\] Only one study described migration of an AVP into the abdominal aorta, for which conservative management was elected.\[^4^4\] Vessel recanalization is rare, complicating approximately 0.4% of AVP deployments in the literature.\[^7\] In 2014, Guneyli et al. experienced recanalization in one patient out of their series of 41 AVP placements over an average follow-up period of 4.7 months.\[^4^5\] In 2006, Hoit et al. deployed the AVP as a buttress against which they packed coils, improving vascular occlusion and preventing coil migration.\[^4^6\]

Use of the first through third generations of the AVP in tortuous vessels is difficult and a 5-French sheath is required. In 2011, Zhu et al. observed that only 5 of 22 patients presenting for splenic artery embolization had splenic arteries that were sufficiently non-tortuous to allow deployment of an AVP.\[^2^1\] The newest generation in the AVP family, the AVP 4, overcomes this limitation as it can be deployed through a 0.038 inch microcatheter. While the AVP 4 can be deployed via a microcatheter, its use is limited to vessels no larger than 6 mm in diameter.\[^2^1,2^5,4^7\]

Conclusion

The AVP has a wide array of potential indications given its utility in high-flow vessels that would otherwise have a high risk of migration and possible systemic embolization with traditional embolic agents. The AVP can be precisely positioned and can be retrieved and redeployed if necessary. Few studies have documented complications such as recanalization, incomplete embolization, and migration, although these have been rare.\[^2^3\] We experienced complete occlusion without complications in 28 embolizations using an AVP. Further data are needed to determine the long-term efficacy of AVP occlusion; however, current reports are optimistic for its future in vascular and interventional radiology.

Financial support and sponsorship
Nil.

Conflicts of interest
The authors declare that they have no conflicts of interest or relevant grant information.

References

1. Zhu et al. observed that only 5 of 22 patients presenting for splenic artery embolization had splenic arteries that were sufficiently non-tortuous to allow deployment of an AVP.[21] The newest generation in the AVP family, the AVP 4, overcomes this limitation as it can be deployed through a 0.038 inch microcatheter. While the AVP 4 can be deployed via a microcatheter, its use is limited to vessels no larger than 6 mm in diameter.[21,25,47]
References

37. Abdel Aal AK, Hamed MF, Blosca RF, Saddekeni S, Raghuram K. Occlusion time for amplatzer vascular plug in the management of

