Introduction

Sacrococcygeal teratoma may be detected antenatally by physical examination and imaging.[1] When sacrococcygeal teratoma has a high vascular component and a diameter exceeding 10 cm, it has a high risk of rupture and consequently profuse bleeding before and especially during surgical resection.[2,3] We present a case of a giant high-vascular sacrococcygeal teratoma type-1 that was treated with preoperative endovascular embolization prior to its complete surgical resection.

Case Report

A giant high-vascular sacrococcygeal teratoma type-1 was detected in a female fetus by prenatal ultrasound and magnetic resonance [Figure 1].[1] The patient with the giant sacrococcygeal teratoma (maximum diameter 15.5 cm) was delivered by cesarean birth at 35 weeks gestation, with a weight of 3240 g [Figure 2]. Two hours later, through the left subclavian artery, the patient underwent abdominal aorta angiography. This confirmed the high-vascular tumor supplied by the middle sacral artery and distal vessels from the right internal iliac artery [Figure 3]. All these arteries were embolized distally with gelatin sponges. With the angiographic overlay technique, the embolization of the middle sacral artery was completed with a metallic pushable coil deployed proximally.[2,3] The final control demonstrated a successful embolization of the tumor [Figure 4]. Total procedure time was 55 min. The patient received a total of 20 ml of fluids and 6 ml of non-ionic contrast medium of concentration of 300 mg/dl (maximum contrast medium dose 2 ml/kg). Consequently, the neonate was transferred from the angiographic suite to the surgical one. The resection of the giant sacrococcygeal teratoma was quite easy because the bleeding was really minimal: only 12 ml.

Conclusion

The feeding arteries of giant high-vascular sacrococcygeal teratoma of a newborn are perfectly identified by an angiography. Preoperative endovascular embolization of the feeding arteries is a safe and effective procedure that leads to a minimal blood loss during the tumor surgical resection.
Figure 1: Sagittal T2-weighted MR image that demonstrates a large mass containing well-defined areas of varying signal intensity.

Figure 2: Photo of the patient with the giant sacrococcygeal teratoma after birth.

Figure 3: Abdominal aorta angiography that confirms the highly vascular nature of the mass with hypertrophy of the middle sacral artery (arrowhead) and distal vessels from the right internal iliac artery (arrows).

Figure 4: Post-embolization abdominal aorta angiography demonstrates the successful embolization of the feeding vessel of the mass. Note the shadow of the metallic coil deployed into the middle sacral artery (arrowhead).
References

Cite this article as: Rossi UG, Cariati M, Tomà P. Giant sacrococcygeal teratoma embolization. Indian J Radiol Imaging 2013;23:145-7.

Source of Support: Nil, Conflict of Interest: None declared.