Methods Inf Med 2016; 55(02): 114-124
DOI: 10.3414/ME15-01-0045
Original Articles
Schattauer GmbH

SPIRIT: Systematic Planning of Intelligent Reuse of Integrated Clinical Routine Data

A Conceptual Best-practice Framework and Procedure Model
W. O. Hackl
1   Institute of Biomedical Informatics, UMIT – University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
,
E. Ammenwerth
1   Institute of Biomedical Informatics, UMIT – University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
› Author Affiliations
Further Information

Publication History

received: 18 March 2015

accepted: 11 January 2015

Publication Date:
08 January 2018 (online)

Summary

Background: Secondary use of clinical routine data is receiving an increasing amount of attention in biomedicine and healthcare. However, building and analysing integrated clinical routine data repositories are non -trivial, challenging tasks. As in most evolving fields, recognized standards, well-proven methodological frameworks, or accurately described best-practice approaches for the systematic planning of solutions for secon -dary use of routine medical record data are missing.

Objective: We propose a conceptual best-practice framework and procedure model for the systematic planning of intelligent reuse of integrated clinical routine data (SPIRIT).

Methods: SPIRIT was developed based on a broad literature overview and further refined in two case studies with different kinds of clinical routine data, including process-oriented nursing data from a large hospital group and high-volume multimodal clinical data from a neurologic intensive care unit.

Results: SPIRIT aims at tailoring secondary use solutions to specific needs of single departments without losing sight of the institution as a whole. It provides a general conceptual best-practice framework consisting of three parts: First, a secondary use strategy for the whole organization is determined. Second, comprehensive analyses are conducted from two different viewpoints to define the requirements regarding a clinical routine data reuse solution at the system level from the data perspective (BOTTOM UP) and at the strategic level from the future users perspective (TOP DOWN). An obligatory clinical context analysis (IN BETWEEN) facilitates refinement, combination, and integration of the different requirements. The third part of SPIRIT is dedicated to implementation, which comprises design and realization of clinical data integration and management as well as data analysis solutions.

Conclusions: The SPIRIT framework is intended to be used to systematically plan the intelligent reuse of clinical routine data for multiple purposes, which often was not intended when the primary clinical documentation systems were implemented. SPIRIT helps to overcome this gap. It can be applied in healthcare institutions of any size or specialization and allows a stepwise setup and evolution of holistic clinical routine data reuse solutions.

 
  • References

  • 1 Berner ES, Moss J. Informatics challenges for the impending patient information explosion. J Am Med Inform Assoc 2005; 12 (Suppl. 06) 614-617.
  • 2 Safran C, Bloomrosen M, Hammond WE, Labkoff S, Markel-Fox S, Tang PC, Detmer DE, Expert P. Toward a national framework for the secondary use of health data: an American Medical Informatics Association White Paper. J Am Med Inform Assoc 2007; 14 (Suppl. 01) 1-9.
  • 3 Wade TD. Refining gold from existing data. Curr Opin Allergy Clin Immunol 2014; 14 (Suppl. 03) 181-185.
  • 4 Aller RD. The clinical laboratory data warehouse. An overlooked diamond mine. Am J Clin Pathol 2003; 120 (Suppl. 06) 817-819.
  • 5 Geissbuhler A, Safran C, Buchan I, Bellazzi R, Labkoff S, Eilenberg K, Leese A, Richardson C, Mantas J, Murray P, De Moor G. Trustworthy reuse of health data: a transnational perspective. Int J Med Inform 2013; 82 (Suppl. 01) 1-9.
  • 6 Bréant C, Thurler G, Borst F, Geissbuhler A. Design of a Multi Dimensional Database for the Archimed DataWarehouse. Studies in Health Technology and Informatics 2005; 116: 169-174.
  • 7 Canadian Institutes of Health Research.. Secondary Use of Personal Information in Health Research: Case Studies. Ottawa: Public Works and Government Services Canada; 2002. p 150.
  • 8 Chute CG, Beck SA, Fisk TB, Mohr DN. The Enterprise Data Trust at Mayo Clinic: a semantically integrated warehouse of biomedical data. J Am Med Inform Assoc 2010; 17 (Suppl. 02) 131-135.
  • 9 Dorda W, Gall W, Duftschmid G. Clinical data retrieval: 25 years of temporal query management at the University of Vienna Medical School. Methods Inf Med 2002; 41 (Suppl. 02) 89-97.
  • 10 Ganslandt T, Mate S, Helbing K, Sax U, Prokosch HU. Unlocking Data for Clinical Research – The German i2b2 Experience. Appl Clin Inform 2011; 2 (Suppl. 01) 116-127.
  • 11 Junttila K, Meretoja R, Seppälä A, Tolppanen E-M, Ala-Nikkola T, Silvennoinen L. Data warehouse approach to nursing management. Journal of Nursing Management. Blackwell Publishing Limited; 2007. pp 155-161.
  • 12 Evans RS, Lloyd JF, Pierce LA. Clinical use of an enterprise data warehouse. AMIA Annu Symp Proc 2012; 2012: 189-198.
  • 13 de Mul M, Alons P, van der Velde P, Konings I, Bakker J, Hazelzet J. Development of a clinical data warehouse from an intensive care clinical information system. Comput Methods Programs Biomed 2012; 105 (Suppl. 01) 22-30.
  • 14 Athey BD, Braxenthaler M, Haas M, Guo Y. tranSMART: An Open Source and Community-Driven Informatics and Data Sharing Platform for Clinical and Translational Research. AMIA Jt Summits Transl Sci Proc 2013; pp 6-8.
  • 15 Murphy SN, Mendis M, Hackett K, Kuttan R, Pan W, Phillips LC, Gainer V, Berkowicz D, Glaser JP, Kohane I, Chueh HC. Architecture of the open-source clinical research chart from Informatics for Integrating Biology and the Bedside. AMIA Annu Symp Proc 2007; pp 548-552.
  • 16 Frank L, Basch E, Selby JV. The PCORI perspective on patient-centered outcomes research. JAMA 2014; 312 (Suppl. 15) 1513-1514.
  • 17 Boyce RD, Ryan PB, Noren GN, Schuemie MJ, Reich C, Duke J, Tatonetti NP, Trifiro G, Harpaz R, Overhage JM, Hartzema AG, Khayter M, Voss EA, Lambert CG, Huser V, Dumontier M. Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest. Drug Saf 2014; 37 (Suppl. 08) 557-567.
  • 18 Peters SG, Buntrock JD. Big data and the electronic health record. J Ambul Care Manage 2014; 37 (Suppl. 03) 206-210.
  • 19 Bellazzi R. Big Data and Biomedical Informatics: A Challenging Opportunity. Yearb Med Inform. 2014 9. 01
  • 20 Prokosch HU, Ganslandt T. Perspectives for medical informatics. Reusing the electronic medical record for clinical research. Methods Inf Med 2009; 48 (Suppl. 01) 38-44.
  • 21 Inmon B. Data warehousing in a healthcare environment. Pittsburgh (PA): The Data Administration Newsletter, LLC; TDAN.com 2007. [cited 01.10.2014]. Available from: http://www.tdan.com/view-articles/4584/.
  • 22 Leiner F, Haux R. Systematic planning of clinical documentation. Methods Inf Med 1996; 35 (Suppl. 01) 25-34.
  • 23 Coiera E. Guide to health informatics. London; New York, NY: Arnold; Distributed in the USA by Oxford University Press; 2003
  • 24 Flyvbjerg B. Five Misunderstandings About Case-Study Research. Qualitative Inquiry 2006; 12 (Suppl. 02) 219-245.
  • 25 Hackl WO, Rauchegger F, Ammenwerth E. A Nursing Intelligence System to Support Secondary Use of Nursing Routine Data. Appl Clin Inform 2015; 6 (Suppl. 02) 418-428.
  • 26 Winter A, Brigl B, Funkat G, Haber A, Heller O, Wendt T. 3LGM(2)-Modelling to Support Management of Health Information Systems. Stud Health Technol Inform 2005; 116: 491-496.
  • 27 Winter A, Haux R. A three-level graph-based model for the management of hospital information systems. Methods Inf Med 1995; 34 (Suppl. 04) 378-396.
  • 28 Antunes AP, Schiefecker AJ, Beer R, Pfausler B, Sohm F, Fischer M, Dietmann A, Lackner P, Hackl WO, Ndayisaba JP, Thome C, Schmutzhard E, Helbok R. Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage. Crit Care 2014; 18 (Suppl. 03) R119.
  • 29 Helbok R, Schiefecker A, Delazer M, Beer R, Bodner T, Pfausler B, Benke T, Lackner P, Fischer M, Sohm F, Hackl W, Stover JF, Thome C, Humpel C, Schmutzhard E. Cerebral tau is elevated after aneurysmal subarachnoid haemorrhage and associated with brain metabolic distress and poor functional and cognitive long-term outcome. J Neurol Neurosurg Psychiatry 2015; 86 (Suppl. 01) 79-86.
  • 30 Schiefecker AJ, Pfausler B, Beer R, Sohm F, Sabo J, Knauseder V, Fischer M, Dietmann A, Hackl WO, Thome C, Schmutzhard E, Helbok R. Parenteral diclofenac infusion significantly decreases brain-tissue oxygen tension in patients with poor-grade aneurysmal subarachnoid hemorrhage. Crit Care 2013; 17 (Suppl. 03) R88.
  • 31 Helbok R, Schiefecker A, Beer R, Dietmann A, Antunes AP, Sohm F, Fischer M, Hackl WO, Rhomberg P, Lackner P, Pfausler B, Thome C, Humpel C, Schmutzhard E. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal neuromonitoring study. Critical Care 2015; 19 (Suppl. 01) 75.
  • 32 Kofler M, Schiefecker A, Ferger B, Beer R, Sohm F, Broessner G, Hackl W, Rhomberg P, Lackner P, Pfausler B, Thome C, Schmutzhard E, Helbok R. Cerebral Taurine Levels are Associated with Brain Edema and Delayed Cerebral Infarction in Patients with Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2015; 23 (Suppl. 03) 321-329.
  • 33 Hackl WO. Erschließung und Sekundärnutzung von Routinedaten aus der klinischen und pflegerischen Prozessdokumentation: Ein Rahmenkonzept, Vorgehensmodell und Leitfaden [Dissertation]. Hall in Tirol: UMIT; 2013
  • 34 Wolf S. Take care when taking care of fever after aneurysmal subarachnoid hemorrhage. Crit Care 2013; 17 (Suppl. 04) 160.
  • 35 Dooling JA, Downing K. Ensuring data integrity through a clean master patient index. J AHIMA 2014; 85 (Suppl. 03) 46-47.
  • 36 Zunner C, Ganslandt T, Prokosch HU, Burkle T. A reference architecture for semantic interoperability and its practical application. Stud Health Technol Inform 2014; 198: 40-46.
  • 37 Houston SM, Bove LA. Project management for healthcare informatics. New York; London: Springer; 2010
  • 38 Coplan S, Masuda D. Project management for healthcare information technology. New York: McGraw Hill; 2011
  • 39 Ammenwerth E, Haux R, Knaup-Gregori P, Winter A. IT-Projektmanagement im Gesundheitswesen. Lehrbuch und Projektleitfaden; taktisches Management von Informationssystemen; mit 84 Tabellen. Stuttgart: Schattauer; 2015
  • 40 Ganslandt T, Hackl WO. Findings from the Clinical Information Systems Perspective. Yearb Med Inform 2014; 10 (Suppl. 01) 90-94.
  • 41 Wang W, Krishnan E. Big Data and Clinicians: A Review on the State of the Science. JMIR Medical Informatics 2014; 2 (Suppl. 01) e1.
  • 42 Peek N, Holmes JH, Sun J. Technical challenges for big data in biomedicine and health: data sources, infrastructure, and analytics. Yearb Med Inform 2014; 9 (Suppl. 01) 42-47.
  • 43 Post AR, Kurc T, Cholleti S, Gao J, Lin X, Born-stein W, Cantrell D, Levine D, Hohmann S, Saltz JH. The Analytic Information Warehouse (AIW): a platform for analytics using electronic health record data. J Biomed Inform 2013; 46 (Suppl. 03) 410-424.
  • 44 Mandl KD, Kohane IS, McFadden D, Weber GM, Natter M, Mandel J, Schneeweiss S, Weiler S, Klann JG, Bickel J, Adams WG, Ge Y, Zhou X, Perkins J, Marsolo K, Bernstam E, Showalter J, Quarshie A, Ofili E, Hripcsak G, Murphy SN. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture. J Am Med Inform Assoc 2014; 21 (Suppl. 04) 615-620.
  • 45 Sen A, Sinha AP. A Comparison of Data Warehousing Methodologies. Communications of the ACM 2005; 48 (Suppl. 03) 79-84.
  • 46 Samaha TR, Croll PR. A Data Warehouse Architecture for Clinical Data Warehousing. In: Roddick F, Warren JR. editors. Proceedings Australasian Workshop on Health Knowledge Management and Discovery (HKMD 2007) CRPIT. Ballarat, Victoria: Australian Computer Society; 2007. pp 227-232.
  • 47 Do HH, Stöhr T, Rahm E, Müller R, Dern G. Evaluierung von Data Warehouse-Werkzeugen. In: Jung R, Winter R. editors. Data Warehousing 2000: Methoden, Anwendungen, Strategien [Proceedings der Tagung “Data Warehousing 2000” am 14. und 15. November 2000 in Friedrichshafen]. Heidelberg: Physica-Verl.; 2000. pp 44-57.
  • 48 Leonard A, Masson M, Mitchell T, Moss J, Ufford M. Slowly Changing Dimensions. SQL Server 2012 Integration Services Design Patterns: Apress; 2012 pp 261-272.
  • 49 Fayyad UM, Piatetsky-Shapiro G, Smyth P. From Data Mining to Knowledge Discovery in Databases. AI MAGAZINE 1996; 17 (Suppl. 03) 37-54.
  • 50 Codd EF, Codd SB, Salley CT. Providing OLAP (On-line analytical processing) to user-analysts: an IT mandate. Ann Arbor, Mich.: Codd & Associates; 1993
  • 51 COMET Center Oncotyrol.. SEMPER: SEcondary Malignoma – Prospective Evaluation of the Radiotherapeutic dose distribution as the cause for induction (2.4.5). 2014 Available from: http://www.oncotyrol.at/forschung/forschungsprojekte/area-4-hta-and-bioinformatics/245/.
  • 52 Ranegger R, Hackl WO, Ammenwerth E. A proposal for an Austrian Nursing Minimum Data Set (NMDS): a Delphi study. Appl Clin Inform 2014; 5 (Suppl. 02) 538-547.