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1. Introduction
Record linkage may create powerful data-
sets with which investigators can conduct 
studies evaluating the impact of tests or in-
terventions on health [1]. Linked data may 
allow studies that might otherwise be very 
expensive or impossible to conduct. 

Databases that contain information 
about the same persons but do not share a 
unique identifier can be linked using the 
information that is common to the two 
data sources. Record linkage has roots in 
computer science, statistics, and epidemiol-
ogy [2, 3], and many advances have come 
from members of governmental agencies 
(national census [3], vital records [4, 5], 
and public health organizations [6, 7]) who 
needed to integrate very large data sources.

The most useful variables in probabilis-
tic linkage are highly specific, with those 
that uniquely identify persons (e.g. social 
security number [SSN]) maximally spe-
cific. Variables that have the same value for 
many people (e.g. gender), while poten-
tially useful for identifying false matches, 
may require combination with other 
weakly specific variables to identify true 
matches. Not surprisingly, health care vari-
ables with the most discriminating power 
are considered protected health informa-
tion (PHI) under the Health Insurance 
Portability and Accountability Act 
(HIPAA) of 1996 [8]. To our knowledge, all 
linkages of health care data files to date 
have used PHI. Commonly used linkage 
variables, all of which are PHI, include 
names, dates such as birthdate or admis-
sion date, zip codes, and SSNs.

Linkage of clinical (e.g. registries and 
electronic medical records [EMRs]) and 
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Summary
Objective: Record linkage may create 
powerful datasets with which investigators 
can conduct comparative effectiveness 
studies evaluating the impact of tests or in-
terventions on health. All linkages of health 
care data files to date have used protected 
health information (PHI) in their linkage vari-
ables. A technique to link datasets without 
using PHI would be advantageous both to 
preserve privacy and to increase the number 
of potential linkages. 
Methods: We applied probabilistic linkage 
to records of injured children in the National 
Trauma Data Bank (NTDB, N = 156,357) and 
the Pediatric Health Information Systems 
(PHIS, N = 104,049) databases from 2007 to 
2010. 49 match variables without PHI were 

used, many of them administrative variables 
and indicators for procedures recorded as In-
ternational Classification of Diseases, 9th 
revision, Clinical Modification codes. We vali-
dated the accuracy of the linkage using 
identified data from a single center that sub-
mits to both databases.
Results: We accurately linked the PHIS and 
NTDB records for 69% of children with any 
injury, and 88% of those with severe trau-
matic brain injury eligible for a study of inter-
vention effectiveness (positive predictive 
value of 98%, specificity of 99.99%). Accu-
rate linkage was associated with longer 
lengths of stay, more severe injuries, and 
multiple injuries.
Conclusion: In populations with substantial 
illness or injury severity, accurate record link-
age may be possible in the absence of PHI. 
This methodology may enable linkages and, in 
turn, comparative effectiveness studies that 
would be unlikely or impossible otherwise.
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non-clinical (e.g. billing) databases has 
been identified as an important advance-
ment for patient-oriented outcomes re-
search [9]. Linkage without using PHI 
would be advantageous because it would 
increase the number of potential linkages 
without increasing the risk of disclosing 
PHI to additional researchers.

The research question that motivated 
this linkage is an effectiveness study of an 
intervention for children with severe (Glas-
gow Coma Scale [GCS] 3–8) traumatic 
brain injury (TBI). The problem is that no 
existing U.S. database contains the neces -
sary injury severity and treatment variables 
to perform such a study. However, two 
large, overlapping databases each contain a 
portion of the needed information: the 
Pediatric Health Information System 
(PHIS) database and the National Trauma 
Data Bank (NTDB). 

Our group has previously demonstrated 
that a linkage’s success is dependent on the 
size of the files being linked, the anticipated 
number of matches, and the discriminating 
power (or information content) of the vari-
ables that are common to the two data 
sources [10]. Using those three parameters, 
the feasibility of a proposed linkage at a 
given accuracy can be estimated. For a hy-
pothetical candidate record pair from two 
files A and B with |A| and |B| records, re-
spectively, assuming all V common vari-
ables agree:

1) Prior Odds =  

where M is a prior estimate of the number 
of matched pairs, and

2) Likelihood Ratio =   2Match Weight(i)

where Match Weight (i) = log2  , mi is  
 
the conditional probability of agreement on 
value x of variable i given that the pair is 
matched, and ui is the conditional prob-
ability of agreement on value x of variable i 
given that the pair is unmatched. We esti-
mate the Likelihood Ratio (for feasibility 
assessment) by making simplifying as-
sumptions: There are pairs with no data er-
rors or omissions; probability distributions 
are identical for variable i in file A, file B 

and matched pairs, say pi (x); and value-
specific match weights can be replaced 
with their weighted average over all values. 
In this case:

3) Match Weight (i) ≈ 
pi (x) log2 (1/pi (x)) = 
H(i), Information Entropy/Content

4) Posterior Odds ≈  
 
  2 H(i)  or

5) Posterior Odds = 
Prior Odds × Likelihood Ratio

Consequently, any datasets where the three 
factors combine to produce satisfactory 
posterior odds (for example, odds 5.6 to 1, 
equivalent to probability 0.85, or odds 9 to 
1, equivalent to probability 0.90) should be 
linkable by our method. In a similar appli-
cation, Belin et al. [11] used record linkage 
to find duplicates in anonymous survey 
data without using PHI.

Because a limited number of hospitals 
submit data to both databases (modest file 
sizes), TBI is not uncommon at pediatric 
trauma centers (anticipated number of 
matches), and many variables are common 
to PHIS and the NTDB (discriminating 
power), we hypothesized that accurate rec-
ord linkage of children with severe TBI 
would be possible without using PHI.

2. Objectives

1) Without using PHI, to link the records 
of children with trauma in both the 
NTDB and the PHIS database from 
2007–2010. 

2) Overall, to create a linked dataset with 
which to study the effectiveness of intra-
cranial pressure (ICP) monitoring in 
children with severe TBI.

3. Methods
3.1 Study Design

This study was approved by the university 
and hospital institutional review boards 
and written permission was obtained from 
both the Children’s Hospital Association 
(CHA, PHIS owner) and the American 

College of Surgeons (ACS, NTDB owner). 
We defined retrospective cohorts from 
2007–2010 in both databases of children 
admitted to a hospital after trauma and cre-
ated a standardized dataset from each data-
base. The current data use agreements for 
the two databases do not allow identified 
data to be linked by a third party.

We therefore used probabilistic linkage 
to match patient records in the two data-
sets. In order to calibrate the linkage pa-
rameters and externally validate the linkage 
results, we compared the linked dataset to 
the PHIS submission, trauma registry, and 
EMR data from the same time period at 
one children’s hospital that submits data to 
both PHIS and the NTDB. Our overall goal 
was to create a cohort with which to study 
the effectiveness of ICP monitoring in 
children with severe TBI.

3.2 Setting

PHIS is a benchmarking and quality im-
provement database containing inpatient 
data from 44 U.S. children’s hospitals with 
more than 500,000 discharges per year 
[12]. PHIS contains rich utilization infor-
mation, particularly regarding treatments 
such as medications and nursing interven-
tions, but lacks important clinical variables 
such as injury severity. PHIS data are only 
available to approved researchers at 
member hospitals and do contain limited 
PHI (complete dates of birth, admission, 
and discharge, and a hospital identifier). 
PHIS contains administrative data includ-
ing demographics, diagnoses, and pro-
cedures as well as utilization information 
for pharmacy, imaging, laboratory, supply, 
nursing, and therapy services [13]. The 
data reliability and quality monitoring pro-
cesses used by the PHIS database have 
been reported previously [14, 15].
The NTDB contains standardized trauma 
registry data from more than 3 million ad-
missions at 900 trauma centers in the 
United States [16]. It contains the injury 
and clinical variables necessary for studies 
of TBI, but does not contain detailed treat-
ment information. The NTDB is de-ident-
ified and contains no PHI. The de-ident-
ified NTDB Research Data Set (RDS) con-
tains all submitted records for a given year. 
In 2008, for example, the RDS contained 
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more than 600,000 records of hospital ad-
missions, including more than 100,000 
children. The NTDB also has a continuous 
data quality improvement process [16]. 

From 2007 to 2010, thirty children’s 
hospitals submitted data to both PHIS and 
the NTDB.

3.3 Selection of Participants

We selected patients from PHIS and the 
NTDB who met our inclusion criteria: 
children < 18 years of age who were dis-
charged from a PHIS hospital in 2007 
through 2010 with an International Clas-
sification of Diseases, Ninth Revision, 
Clinical Modification (ICD-9-CM) dis-
charge diagnosis code for trauma or who 
were included in the NTDB RDS in 2007 
through 2010 (▶ Figure 1). These patients 
represent the trauma cohort. After linking 
these records, we then selected for children 
with TBI by searching the NTDB variables 
for the ICD-9-CM diagnostic codes for TBI 
used by the Centers for Disease Control 
(CDC) [17]. In accordance with our overall 
goal of studying the effectiveness of ICP 
monitoring, our final cohort includes pa-

tients with severe TBI with length of stay 
(LOS) ≥ 24 hours and non-missing hospital 
disposition information (▶ Figure 1).

3.4 Injury Severity and Mechanism

We calculated injury severity score (ISS) 
and maximum abbreviated injury scale 
(AIS) body region scores from ICD-9-CM 
diagnosis codes using ICDMAP-90 soft-
ware (Johns Hopkins University and Tri-
Analytics, Inc., Baltimore, MD) [18]. The 
NTDB contains variables for ICDMAP-de-
rived injury scores, but to avoid bias we cal-
culated these scores locally using the same 
procedures we applied to PHIS data. We 
categorized injury mechanism using the 
external cause-of-injury matrix created by 
the CDC (with ICD-9-CM diagnosis code 
995.5 added to the child abuse/assault cat-
egory) and injury type using the Barell ma-
trix [19, 20]. 

3.5 Record Linkage

Probabilistic linkage was used to link the 
records in the de-identified PHIS and 
NTDB datasets. Probabilistic linkage is a 

well-established methodology introduced 
by Newcombe [6, 7] and formalized by 
 Fellegi and Sunter [4]. The uniformly most 
powerful test of whether any two records 
are a true match is the match weight. 

Match weights can be calculated for 
each variable and summed to get a total 
match weight for a candidate record pair if 
comparison outcomes are independent. In 
that case, given that the i-th variable agrees 
between two records, the likelihood ratio 
(LR) that the records are a true match = 
 
  , where mi is the probability that the 
 
 i-th variable agrees given that the two rec-
ords refer to the same person/event and is 
the probability that the i-th variable agrees 
given that the two records do not refer to 
the same person/event. Given that the ith 
variable disagrees between the two records, 
the LR that the records are a true match = 
 
  . A match weight can be calculated 
 
 for each variable = log2 (LR of true match). 
The LinkSolv linkage model incorporates 
more complex match weights allowing for 

Figure 1  
Patient selection 
method for overall 
linkage. ICD-9-CM, 
International Classifi-
cation of Diseases,  
9th revision, Clinical 
Modification; ICP, 
 intracranial pressure; 
NTDB, National Trau-
ma Data Bank; PHIS, 
pediatric health infor-
mation systems; TBI, 
traumatic brain in-
jury. a 2,261 linked 
pairs with missing 
Glasgow Coma Scale 
excluded. b Length of 
stay > 24 hours and 
non-missing disposi-
tion
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agreements on specific values, disagree-
ments, missing values, and dependent 
comparison outcomes. The probability of a 
candidate pair being a true match can be 
calculated from the overall match weight 
using Bayesian techniques [10, 21]. For 
convenience, we apply Bayes’ rule in terms 
of odds [22].

To increase the efficiency of the compu-
tational matching, only candidate record 
pairs that agree on “blocking” variables are 
compared. For example, if age was used as 
a blocking variable, only the PHIS records 
of 8-year-old children would be compared 
to a NTDB record for an 8-year-old child. 
To account for pairs of records not com-
pared because of disagreement or missing 
data in a blocking field, different groups of 
blocking variables are applied in subse-
quent matching passes.

Probabilistic linkage and information 
content calculation were performed using 
LinkSolv (Strategic Matching, Inc., Morrison-
ville, NY). LinkSolv is the commercial version 
of the linkage software used by the Crash 
Outcomes Data Evaluation System (CODES) 
network funded by the National Highway 
Traffic Safety Administration [21, 23]. 

We selected match and blocking vari-
ables present in both the NTDB and the 

PHIS (see Table I in the ▶Online Appen-
dix). In order to select groups of blocking 
variables, we calculated the information 
content [5] of each variable in each dataset. 
Information content (entropy or uncertain-
ty, technically, but the terminology is often 
substituted) for a variable is a function of 
the number of different values of the vari-
able, the individual probabilities of each 
value, and the likelihood of that variable 
being missing [24, 25]. The units are bits 
(from log2 x), where the information con-
tent of an evenly distributed binary vari-
able (x is the number of possibilities) with-
out missing data would be log2 2 =  
1 bit. LinkSolv uses the standard formula 
for entropy [24] to calculate information 
 
 content H(x) = – . It assumes 
 
 that each variable has a multinomial dis-
tribution and estimates population propor-
tions from sample proportions among rec-
ords with non-missing values. More infor-
mation content in the match variables 
would generally make accurate linkage 
more likely.

We chose blocking variables with good 
reliability in both databases, little or no 
missing data, and (when grouped) suffi-

cient information content to make the 
 linkage computationally efficient. LinkSolv 
runs in Microsoft Access, and as such the 
linkage database (.mdb file) must remain 
smaller than 2GB. In the setting of 49 
match variables (see Table I in the ▶On-
line Appendix), blocking variables with low 
information content would have required 
evaluation of more candidate pairs than 
was computationally possible using our 
system.

Two blocking variables (admission age 
in years and admission year) were chosen 
and applied to the first matching pass and 
four blocking variables (admission age, 
gender, race/ethnicity, and intensive care 
unit [ICU] admission) were applied to a 
second pass. A unique identifier for each of 
the 30 hospitals in the linkage was esti-
mated iteratively and applied to both 
 passes of subsequent matching runs as a 
blocking variable. 

The 49 match variables were required to 
match exactly (after cleaning and standard-
ization of both datasets) with the exception 
of hospital length of stay, ISS, and abdomen 
AIS score, which were allowed tolerances 
of +/– 1 day or score unit. We chose these 
parameters over successive trial match runs 
by observing match performance when dif-

Figure 2  
Candidate pairs 
 before and after first 
MCMC pass,  
N = 394,756 each. 
MCMC, Markov chain 
Monte Carlo; PPV, 
positive predictive 
value; Sens, sensitiv-
ity; Spec, specificity
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ferent tolerances were allowed. Increasing a 
tolerance always decreases that variable’s 
discriminating power. 

After the two match passes were run, 
candidate pairs with a calculated match 
probability below 0.01 were excluded from 

further analysis, and the remaining candi-
date pairs were merged into a single table. In 
order to improve the likelihood of classifi-
cation of each candidate pair as a true match 
or true non-match, a Markov chain Monte 
Carlo (MCMC) parameter estimation step 

with refinement of each pair’s match prob-
ability was included. Each pairs’ true match 
status was then imputed five times from that 
match probability. Several MCMC iterations 
were run between imputations to ensure 
that the five imputed sets of matched pairs 
were independent. LinkSolv readily incor-
porates the multiple imputation and 
MCMC steps used in this linkage.

A candidate pair identified as matched 
during any of the five imputations was con-
sidered for inclusion in the matched data-
set [21]. In many cases, a given candidate 
pair matched in all five imputations. To 
create the linked pairs dataset, we first 
identified candidate pairs for which the es-
timated match probability was maximized 
for both a given NTDB record and a given 
PHIS record. These pairs were placed in 
the linked pairs dataset and other candi-
date pairs containing either that NTDB 
record or that PHIS record were discarded. 
From the remaining candidate pairs, we 
then identified pairs with the highest 
match probability for a given NTDB record 
and lower than the highest match probabil-
ity for a given PHIS record. These pairs 
were added to the linked pairs dataset. 

To determine the minimum match 
probability we would accept as a true link 
and to validate the overall linkage, we re-
viewed all matches from a single center 
that submits data to both PHIS and the 
NTDB. Using PHI, we performed a vali-
dation linkage that linked PHIS data, the 
EMR, and trauma registry data for patients 
in the 2007–2010 linked dataset from 
 Primary Children’s Hospital (PCH), an 
American College of Surgeons (ACS) Level 
1 trauma center in Salt Lake City, UT (see 
Figure I in the ▶Online Appendix). 

Most record linkage software requires 
users to review the distribution of match 
probability after their linkage and to manu-
ally define regions of match probability for 
linked records, possible links, and non-
links [26]. Records in the region of possible 
links are often directly reviewed (including 
PHI) to determine their final match status. 
Because our datasets only included PHI for 
records from one hospital, we identified the 
optimal match probability cutoff for a can-
didate pair in the validation linkage and 
then applied that cutoff to the overall link-
age. We chose the minimum match prob-

Table 1 Characteristics of children with trauma in the PHIS and NTDB datasets

Age

0 to 364 days

1 to <5 years

5 to <13 years

13 to <18 years

Gender

Male

Missing

Admission Year

2005–2006

2007

2008

2009

2010

Injury Mechanism

Fall

Assault/Abuse

Motor vehicle

Other

No E-code (Missing)

Injury Severity Score

< 15

≥ 15

Hospital Course

ICU admission 

Length of stay, median (IQR)

Hospital Outcome

Mortality

Missing

col%, column percentage; ICU, Intensive Care Unit; IQR, Interquartile range; NTDB, National Trauma 
Data Bank; PHIS, Pediatric Health Information Systems database 
Column percentages may not add to 100% because of rounding. 
amissing values excluded
bP-value unchanged if 2005–2006 excluded
cWilcoxon rank-sum test
d5,254 of these (97%) are from three hospitals with known missing disposition data

PHIS
N = 156,357 
n (col%)

20,040 (13)

43,522 (28)

57,113 (37)

35,682 (23)

97,314 (62)

62 (0)

309 (0)

31,406 (20)

40,115 (26)

42,421 (27)

42,106 (27)

42,144 (27)

8,630 (6)

14,849 (10)

66,936 (43)

23,798 (15)

145,443 (93)

10,914 (7)

22,871 (15)

1 (1–3)

1,487 (1)

5,439d (3)

NTDB
N = 104,049 
n (col%)

12,931 (12)

25,315 (24)

42,594 (41)

23,209 (22)

66,682 (64)

17 (0)

0 (0)

18,528 (18)

28,014 (27)

28,149 (27)

29,358 (28)

45,793 (44)

6,876 (7)

15,721 (15)

35,534 (34)

125 (0)

93,140 (90)

10,909 (10)

14,953 (14)

2 (1–3)

949 (1)

11,212 (11)

X2 P

< 0.001

< 0.001a

< 0.001b

< 0.001a

< 0.001

0.07

< 0.001c

0.37a
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pital, LOS, disposition, ICU admission) 
and variables derived from ICD-9-CM 
diagnostic and procedure codes (all others) 
typically present in a  billing file. The infor-
mation per variable was higher for admin-

Figure 3 Selection of match probability cutpoint for overall linkage. TBI, traumatic brain injury

ability for a true link to maximize the sensi-
tivity of the linkage process without signifi-
cantly increasing the false positive rate. 

3.6 Statistical Analysis

We used the chi-square test or Fisher’s exact 
test to compare categorical data, as appro-
priate. Interval variables (e.g. age in years, 
LOS) were compared using the Wilcoxon 
rank-sum test. Information content per 
variable was tested using the Student’s t-test.

Data management and validation ana-
lyses were performed using STATA™ (Stata-
Corp LP, College Station, TX) and the R 
environment (version 3.0.2). Statistical sig-
nificance was defined as p < 0.05 for group 
comparisons.

4. Results
4.1 All Hospitals

We identified 104,049 records in the PHIS 
database and 156,357 records in the NTDB 
at the 30 hospitals who submitted data to 
both databases during 2007–2010 (▶ Fig-
ure 1). The patients in the NTDB file 
(median age 7 years, interquartile range 
[IQR] 3–12) were slightly older than those 
in the PHIS file (6 years, IQR 2–12, Wil -
coxon p <0.001) (▶ Table 1). Approxi-
mately two-thirds of the patients in both 
files were male. 

Many of the patients were not severely 
injured: the median ISS score in both data-
sets was 4 (PHIS IQR 1–5, NTDB IQR 
4–9). Patients in the NTDB were more 
likely to have a defined injury mechanism, 
more likely to be injured in a motor vehicle 
crash, and more likely to be severely in-
jured (ISS, ▶ Table 1).

The median hospital LOS was 2 days 
(IQR 1–3) (▶ Table 1). ICU admission 
rates were comparable in the two files, but 
LOS and in-hospital mortality were greater 
in the NTDB file.

4.2 Match Variables and 
 Information Content

We selected 49 match variables and the six 
blocking variables described in the Meth-
ods (▶ Table 1). The overall information 
content in the PHIS file (35.0 bits) was 

similar to that in the NTDB file (35.6 bits) 
(see Table II in the ▶Online Appendix). In 
both files, the information was evenly split 
between variables that would be present in 
an administrative file (demographics, hos-
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istrative variables (PHIS, 1.75 bits/variable 
and NTDB, 1.71 bits/variable) than ICD-
9-CM variables (PHIS, 0.45 bits/variable 
and NTDB, 0.48 bits/variable), overall 
t-test p = 0.005.

4.3 Validation Sample  
(Primary Children’s Hospital)

We identified 5,524 records of injured 
children submitted to the PHIS database 
and 4,306 records submitted to the NTDB 
from PCH during 2007–2010 (Figure I in 
the ▶Online Appendix). Over four years, 
247 patients from PCH would be eligible 
for our study of ICP monitoring. Both 
PHIS and the NTDB gained member hos-
pitals during the study, which is the likely 
explanation for the increase in patients 
over time in the non-PCH hospitals (Table 
III in the ▶Online Appendix). Differences 
between PCH and other hospitals in age 
and gender were statistically significant but 
unlikely to be clinically relevant. Patients 
from PCH were more likely to be injured in 
a motor vehicle crash, more likely to be 
more severely injured (ISS), more likely to 
be admitted to the ICU, and more likely to 
die in the hospital. 

4.4 Match Parameter Refinement 
and Match Probability Cutpoint 
Selection

Match parameter refinement using the 
MCMC process was necessary to make  
the sensitivity of this linkage acceptable 
(▶ Figure 2). Because our overall goal was 
to study the effectiveness of ICP monitor-
ing in children with severe TBI, we chose a 
match probability cutpoint in the vali-
dation linkage to maximize positive predic-
tive value (PPV) and sensitivity without a 
significant loss of specificity (▶ Figure 3). 
PPV was robust to cutpoint selection in 
children with severe TBI. We selected a 
match probability of 0.85 to apply to the 
larger linkage. 

4.5 Validation Linkage (PCH)

We linked PHIS and NTDB records for 
69% of the patients from PCH with trau-
ma, 72% with TBI, and 87% with severe 
TBI. Among those in the validation sample 
who would be eligible for the effectiveness 
study of ICP monitoring (LOS ≥ 24 hours 
and non-missing disposition), we found a 
sensitivity of 88%, a positive predictive 

value of 98%, and a specificity of 99.99% 
(see Figure I in the ▶Online Appendix) for 
accurate linkage of PHIS and NTDB rec-
ords. The many (15,030) candidate pairs 
correctly identified as true negatives by the 
linkage process relative to the few candi-
date pairs correctly identified as true 
matches (214), false positives (4), and false 
negatives (28) complicates the interpreta -
tion of specificity in this analysis. Of the  
28 false negatives, one child died in  
< 72 hours, 12 were discharged home in 
< 72 hours, 12 were discharged home in 3 
to 7 days (median 5 days), and 3 had longer 
stays. All discharges home were without 
home nursing. A child who was discharged 
home alive in < 72 hours may have been 
classified as having severe TBI because of 
sedatives and other drugs administered 
early in their clinical course, but not have a 
severe injury; however, they still represent 
false negatives.

Patients with more severe injuries  
were more likely to link accurately (exact  
p < 0.001, severe versus non-severe TBI, 
▶ Figure 4). Patients who linked accurately 
were more likely to have longer hospital 
and ICU lengths of stay, higher ISS, and 
secondary injuries outside the head 
(▶ Table 2). Likelihood of linkage was not 
related to disposition, head AIS score, or 
total number of procedures received. 

4.6 Overall Linkage (All Hospitals)

In the overall cohort, we linked PHIS and 
NTDB records for 62% of the patients with 
trauma, 64% with TBI, and 74% with se-
vere TBI (▶ Figure 1). We linked 78% of 
patients eligible for an effectiveness study 
of ICP monitoring, totaling 2,165 patients. 
The denominators for each category shown 
include true negatives, i.e. patients that 
were present in the NTDB but not in PHIS 
and correctly did not link. Because our da-
tasets do not contain identifiers for the 
overall cohort, a true linkage rate cannot be 
calculated directly, but is estimated to be 
similar to that in the validation sample. 
Likelihood of linkage in the overall sample 
was associated with age, admission and 
 discharge year, race/ethnicity, hospital and 
ICU lengths of stay, discharge disposition, 
ISS, head AIS, secondary injuries, and pro-
cedure count (see Table IV in the ▶Online 

Figure 4 Linkage accuracy by severity of injury. TBI, traumatic brain injury

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Methods Inf Med 4/2015 © Schattauer 2015

335 T. D. Bennett et al.: Linked Records of Children with Traumatic Brain Injury

Appendix). Some of these associations 
were statistically significant but do not ap-
pear to be clinically meaningful differences 
(admission and discharge year, disposition, 
ISS, head AIS). 

The median proportion of NTDB rec-
ords linked at each hospital was 82% (range 
35–100%, IQR 76–89%). Excluding the two 
hospitals with proportions of NTDB rec-
ords linked below 60% changed the median 
linked proportion to 83% (IQR 77–90%).

5. Discussion

We found that the medical records of 
children with severe TBI in the PHIS and 
NTDB databases can be accurately linked 
without using PHI. This linked dataset can 
be used to study the effectiveness of ICP 
monitoring in this population.

MCMC match parameter refinement 
appears to expand the range of Fellegi-
Sunter probabilistic linkage. Accurate link-
age may be possible in some scenarios 
where probabilistic linkage was thought to 
have significant limitations: datasets con-
taining only variables with relatively low 
information content, and substantial de-
pendence between variables. Winkler has 
also reported that good linkage decision 
rules can be developed if conditional in -
dependence between dataset variables is 
 violated [2, 27, 28].

In part because of data security and pri-
vacy concerns, privacy-preserving record 
linkage is an active and robust area of re-
search [29–33]. Our method of linkage 
without using PHI could be considered a 
member of that family of methods. When 
one or more of the datasets that investi-
gators are attempting to link lack PHI, our 
method may be very useful, assuming suf-
ficient common information content is 
present. When common PHI is present in 
the two datasets but the governance chal-
lenges of sharing it are prohibitively diffi-
cult, our method and, for example, that of 
Weber et al. [33] might be considered.

One strength of this study is that vali-
dation of linkage accuracy was conducted 
using identifiable data from a single center 
that submits data to both PHIS and the 
NTDB. Because the linkage variables are 
common administrative and billing data 

from two standardized national databases, 
validation at a single center should be rep-
resentative. Other linkages between two 
standardized databases have been validated 
in a similar fashion [34, 35]. We matched 
the records of 88% of our intended effec-
tiveness study population in the validation 
linkage. Even when PHI is available, accu-
rate probabilistic linkage of approximately 
90% of records is common when linking 
PHIS to other national databases [34, 36]. 
Of the 10% of children in the validation 
linkage whose PHIS and NTDB records 
were not matched, approximately half were 
early deaths or early home discharges un-
likely to benefit from an intervention such 
as ICP monitoring. Children with altered 
mental status from sedatives and/or neuro -

muscular blockade given during the pre-
hospital phase of their care can be inappro-
priately classified as severe TBI, and the 
unlinked early home discharges likely are 
examples of that scenario. GCS has known 
limitations as a measure of TBI severity 
[37], but it is the current gold standard.

Our study had several advantages that 
represent limitations to the generalizability 
of this technique. First, and likely most im-
portantly, children with severe TBI often 
require intensive care, long hospital stays, 
and procedures, all of which generate data-
base information content. We found a di-
rect relationship between severity of illness 
and match likelihood, and that relationship 
is likely mediated by information content. 
Second, ICD-9-CM diagnosis codes for 

Table 2 Linkage status by match variable, validation linkage

Administrative variables

Demographics

Age, years (median(IQR))

Admission year, mode (%)

Discharge year, mode (%)

Male, n (%)

Insurance type, mode (%)

Race/ethnicity, mode (%)

 Missing, n (%)

Hospital Course

ICU admission, n (%)

ICU days, median (IQR)

 Missing, n (%)

Hospital LOS, days(median (IQR))

Discharge disposition, mode (%)

ICD-9-CM variables

Injury Severity

Injury Mechanism, mode (%)

Injury Severity Score (ISS)

Body region AIS scores

 Head, mode (%)

 Number Non-Head AIS ≠ 0,  
median (IQR) 

Proceduresc

Total count, median (IQR)

Linkeda

N = 218

6 (3–12)

2008 (33)

2008 (30)

131(60)

“other”, (43)

“white”, (61)

52(24)

217 (100)

3 (1–8)

1 (0)

9 (4–17)

“home”, (66)

“MVT”, (38)

17 (10–27)

3 (39)

1 (0–2)

1 (0–2)

Unlinkeda

N = 28

5 (1.5–10.5)

2008 (36)

2008 (36) b

20(71)

“insurance”, (50)

“white”, (71)

6(21)

27 (96)

1 (1–2)

1 (4)

4 (2.5–5)

“home”, (93)

“other” (39)

9 (9–16)

3 (43)

0 (0–1)

1 (0–1)

overall 
P

0.22

0.34

0.22

0.31

0.11

0.24

0.22

< 0.001

< 0.001

0.04

0.04

< 0.001

0.31

< 0.001

0.06

test
(if not exact)

ranksum

ranksum

ranksum

ranksum

ranksum

ranksum
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trauma are multidimensional. Injury type 
and mechanism, both of which  
have important information content,  
can be derived from these codes without 
additional database variables. Third, 
children’s hospitals common to the two da-
tabases are not particularly common (30, 
in this case). Iteratively, we could estimate a 
hospital identifier accurately. These advan-
tages are not ubiquitous, but we doubt that 
they are unique to this linkage. 

The process by which users of a Baye-
sian record linkage method choose 1:1 
pairs requires careful consideration. Linked 
record pairs found by LinkSolv are not 1:1. 
This is a general concern for hierarchical 
Bayesian record linkage techniques be-
cause imposing a 1:1 constraint after fitting 
the linkage model can lead to statistical in-
consistencies [38]. Jaro’s [39] use of a Lin-
ear Sum Assignment algorithm is an 
example of this practice. LinkSolv uses a 
quick but greedy algorithm to find 1:1 pairs 
during each MCMC iteration while fitting 
the linkage model. Because our overall goal 
was to create a dataset with which to study 
children with severe TBI, we used a 
method to maximize the positive predictive 
value of identified links. 

Our group has previously reported a 
method to estimate the necessary agree-
ment weight (analogous to information 
content) for a given linkage [10]. That esti-
mation method does not take into account 
MCMC-augmentation of probabilistic 
linkage, but it may assist potential users in 
determining if a linkage is possible. Pro-
posed linkages of relatively common rec-
ords in the datasets (relative to file size), 
overall modest file sizes, and rich informa-
tion content are more likely to  succeed. 

In conclusion, using multiple impu-
tation and MCMC methods, accurate 
medical record linkage is possible in the 
absence of PHI. The success of such link-
ages is more likely when the population of 
interest has substantial illness or injury se-
verity requiring prolonged hospital stays 
and procedures that generate database in-
formation content. When investigators or 
health personnel are attempting a linkage 
and any one of the datasets lacks PHI, our 
method may be very useful, assuming suf-
ficient common information content is 
present. Our method may enable linkages 

and, in turn, comparative effectiveness 
studies that would be unlikely or impos -
sible otherwise [1]. The linked dataset of 
more than 2,000 patients with severe TBI 
we generated in this analysis can be used to 
study the effectiveness of ICP monitoring.
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