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Summary
Objectives: To summarise current research that takes advantage 
of “Big Data” in health and biomedical informatics applications.
Methods:Survey of trends in this work, and exploration of 
literature describing how large-scale structured and unstructured 
data sources are being used to support applications from clinical 
decision making and health policy, to drug design and pharma-
covigilance, and further to systems biology and genetics.
Results: The survey highlights ongoing development of powerful 
new methods for turning that large-scale, and often complex, 
data into information that provides new insights into human 
health, in a range of different areas. Consideration of this 
body of work identifies several important paradigm shifts that 
are facilitated by Big Data resources and methods: in clinical 
and translational research, from hypothesis-driven research to 
data-driven research, and in medicine, from evidence-based 
practice to practice-based evidence.
Conclusions: The increasing scale and availability of large 
quantities of health data require strategies for data management, 
data linkage, and data integration beyond the limits of many 
existing information systems, and substantial effort is underway 
to meet those needs. As our ability to make sense of that data 
improves, the value of the data will continue to increase. Health 
systems, genetics and genomics, population and public health; 
all areas of biomedicine stand to benefit from Big Data and the 
associated technologies.
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1   Introduction
The Health Informatics Society of Aus-
tralia (HISA), a member society of IMIA, 
organized a “Big Data” conference in Mel-
bourne, Australia in April 2013 and 2014. 
The conference has addressed research, 
industry, government and clinical practice, 
introducing more than 200 clinicians, health-
care executives and managers, data and 
information professionals, health informati-
cians, health policy makers, and academics 
to the exploding world of Big Data in health 
and biomedicine. 

During these two conferences, it was 
made very clear that Big Data is a hot topic 
in health care and biomedical research. The 
increased usage of the term “Big Data” in 
the biomedical literature is indicative of the 
emerging importance of large-scale data 
sets in health and biomedicine, and there is 
also an increasing awareness of the role that 
big data can play in scientific and clinical 
research. It was also observed that the term 
“Big Data” could mean different things to 
different groups of people. However, there 
was a common recognition that health care, 
biomedical research and population health 
are generating massive, complex, distributed, 
and often dynamic sets of data, and that the 
size and complexity of this data will pose 
both challenges and opportunities to health 
organizations. 

The term Big Data is believed to have 
originated with Web search companies 
who had to query very large distributed 
aggregations of loosely structured data.1

1 http://www.webopedia.com/TERM/B/
big_data.html

This term has since been used to refer to 
the massive amounts of data collected over 
time, that are difficult to analyze and handle 
when using common database management 
tools.2 While the term may seem to reference 
the volume of data, that isn’t always the case. 
In a 2001 research report, Gartner (formerly 
META Group) analyst Doug Laney defined 
data growth challenges and opportunities 
as being three-dimensional, i.e. increasing 
volume (amount of data), velocity (speed of 
data in and out), and variety (range of data 
types and sources).3 Much of the industry 
continues to use this “3 Vs” model for de-
scribing big data. In 2012, Gartner updated 
its definition as follows: «Big data is high 
volume, high velocity, and/or high variety 
information assets that require new forms 
of processing to enable enhanced decision 
making, insight discovery and process opti-
mization.” Additionally, a new V for “Veraci-
ty” has been added by some organizations to 
describe it. The term Big Data may also refer 
to the technology (such as storage facilities, 
tools and processes) that an organization 
requires to handle large amounts of data. 4 A 
more pragmatic definition defines Big Data 
in terms of a requirement for analytic appli-
cations to handle new types of data that (an 
organization) wasn’t previously tracking.5

2 PC Magazine Encyclopedia. http://www.
pcmag.com/encyclopedia/term/62849/
big-data

3 Laney, Douglas. “3D Data Management: 
Controlling Data Volume, Velocity and 
Variety”. Gartner.

4 “What is Big Data?”. Villanova 
University.

5 David McJannet, from Hortonworks, in 
Information Week, 8/26/2013
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In this article we survey the significant 
developments in advanced data management, 
analytics and visualization over the past few 
years, stimulated by the demands and oppor-
tunities of these growing data sources. Our aim 
is to provide readers with insights into critical 
advances that can contribute to improve the 
efficiency and performance of health organi-
zations and biomedical researchers.

The article opens in Section 2 with an over-
view of the two primary types of sources of 
Big Data: structured data, e.g. databases, and 
unstructured data, e.g. natural language text. 
Section 3 describes published work making 
use of structured sources of Big Data, con-
sidering clinical data sets, research databases, 
population health registries, and Section 4 
summarizes large-scale studies using unstruc-
tured sources of Big Data, focusing on text and 
considering the uses of the biomedical liter-
ature, the narrative sections from electronic 
health records, and social media.

2   Structured and 
Unstructured Big Data in 
Health and Biomedicine
Since the publication of the first Human 
Genome sequence in 2003, the field of ge-
nomics has represented a primary driving 
force behind the generation of Big Data in 
Biomedicine [1, 2]. Progress in laboratory 
analytical techniques (e.g., DNA sequence 
analysis) and mobile technologies (e.g., 
data from physical activity monitors and 
apps) are currently largely responsible for 
an ever-increasing real time production of 
data in high volumes. 

However, the use of Big Data has now 
reached all areas of healthcare, biomedical 
research and population health. Health 
services researchers can combine admin-
istrative and clinical databases to develop 
predictive models to improve health policy 
[3]. The pharmaceutical industry manages 
huge repositories of clinical and molecular 
data for rational drug design and pharma-
cogenomics approaches [4]. In population 
health, disease registries and data from 
clinical records are being used for measur-
ing the impact of health interventions [5]. 

Biomedical researchers have access to new 
sources of genomic data (e.g., microbiome, 
epigenomics) and can explore new hypoth-
eses to understand the molecular causes of 
diseases [6]. Finally, environmental data are 
starting to be integrated with genetic and 
clinical data [7]. Such uses will be explored 
in more details in Section 3.

Since the early days of computing, the 
term ‘data’ has mainly been used to refer 
to structured data. However, in the last few 
years there has been a dramatic increase in 
the production of unstructured data, in a 
higher extend than the volume of available 
structured data. Experts from International 
Data Corporation have estimated that un-
structured data accounts for more than 80 
percent of currently available data. Section 
4 explores the application of Big Data 
methods and tools to unstructured health 
and biomedical data. 

Although there is no formal definition, 
generally the term ‘structured data’ refers 
to data with a defined schema or data model 
(i.e., explicit semantics). Data stored in a da-
tabase is typically structured. Measurements 
and signals are examples of structured data. 
In contrast, unstructured data refers to data 
containing information that is not easily ac-
cessible to computational data management 
systems – the information it contains is not 
presented in a form with a clear data schema 
that enables direct computational interpreta-
tion and analysis. This type of data typically 
requires specialized analytical methods to 
extract the information it contains, and to 
transform it into computable form. Natural 
language text, images, and audio streams are 
examples of unstructured data. 

In practice, structured databases may 
contain unstructured information (e.g., free 
text fields) and unstructured data may in fact 
have some structure (e.g., metadata associ-
ated with an image or markup embedded in 
a document). In addition, some data may 
not be clearly structured or unstructured. 
Nevertheless, the distinction reflects the 
differences in the immediate computability 
and interpretability of the data, and the dis-
tinction has implications for the methods that 
store and analyze the data.

There is a wealth of information relevant 
to understanding human health captured in 
unstructured resources. Texts, images, and 

audio and video streams all are commonly 
produced in the clinical context. These re-
sources require the development of strategies 
for the extraction and the summarization 
of the information they contain, to impose 
structure and meaning by taking advantage 
of internal structure or patterns inherent to 
the source. Technological solutions to enable 
the automatic interpretation of such resourc-
es, in addition to assisting the people who are 
tasked with interpreting these data sources, 
allow to scale up the analysis and consider 
a much broader set of data – across a hos-
pital, a population, or the scientific research 
community. This has resulted in some highly 
innovative research demonstrating the power 
of large-scale data analysis in medicine.

3   Structured Data Sources 
in Health and Biomedicine
There are three primary areas of work regard-
ing the use of structured Big Data in biomed-
icine that have been explored in large-scale 
studies, and that we will review here: (1) 
molecular databases, bioinformatics, sys-
tems biology and personalized medicine, 
(2) clinical and healthcare applications, and 
(3) population and global health and policy 
applications.

Molecular Databases, Bioinformatics, 
Systems Biology and Personalized 
Medicine
Science and research are changing. The 
areas of bioinformatics, systems biology 
and personalized medicine are the areas in 
which we can perceive most clearly that a 
shift is underway from hypothesis–driven to 
data-driven research. Work in computational 
drug discovery and medicinal chemistry has 
clearly followed this trend [4]. The unprec-
edented generation of molecular data has 
also brought about new challenges in data 
visualization. Various software frameworks 
have been developed in order to facilitate data 
analysis and hasten time to discovery. This 
was the case for DIVE, a data visualization 
engine applied to the study of proteins [8]. 
Proteomics was also the focus of the Human 
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Proteome Organisation Proteomics Standards 
Initiative workshop, held in the UK in April 
2013 [9]. Under the auspices of this organi-
zation, standards for data representation in 
proteomics were updated and refined to pave 
the way for Big Data approaches. The use of 
standards is also critical to Big Data sharing 
in genomics. The article by Tenenbaum et 
al [10] reinforces this idea and sustains that 
community-developed open data standards 
should be used. Sharing of genomic data 
among laboratories is pivotal to advances in 
the area of infectious disease surveillance. 
In [11] Iwasaki et al reported the application 
of novel bioinformatics strategies for the 
analysis of large influenza virus genome 
sequence files and the identification of 
potentially hazardous strains. 

Advances in systems biology have also 
been facilitated by big data technologies. 
Understanding the etiology of mental dis-
eases was the focus of the work described 
in [12], where a systems biology approach 
was taken for the study of psychiatric 
diseases. The development of complex 
models of networks of genes and proteins 
was reviewed by Fan and Liu [13] in the 
context of pharmacogenomics. Large data-
sets were analyzed with statistical methods 
to estimate complex correlations between 
biomarkers, genetic profiles and differential 
responses to drugs. 

From a more technical perspective, 
Mohammed et al [14] reported the use of 
advanced computing paradigms (cloud, 
parallel processing) to improve the perfor-
mance of molecular big data analysis pro-
cesses. We know that traditional database 
technology is not able to process the large 
volumes of Big Data in an efficient way 
and emerging technologies such as Hadoop, 
MapReduce or advanced analytical and 
visualization tools are required. 

Clinical and Healthcare Applications 
The application of Big Data methods and 
techniques is growing quickly in the domain 
of clinical medicine and healthcare adminis-
tration. Electronic health record (EHR) data 
has been argued to be the “ultimate” reposi-
tory for making discoveries through clinical 
data mining, supporting improvements in 

clinical practice and even increased the un-
derstanding of the genetic basis of diseases 
[15]. It is also arguably the “ultimate” clinical 
Big Data source. Every hospital admission, 
every prescribed drug, every symptom and 
diagnosis, every procedure, may eventually 
be catalogued in electronic form for every 
patient that visits a doctor. As a striking ex-
ample of the potential of this resource, over 
110 million EHRs across two continents have 
been analyzed for genetic disease research 
[16]. Patterns of deleterious genetic variants 
were determined exclusively from the statis-
tical analysis of phenotype comorbidities in 
EHR data, without any additional genome 
sequencing of those patients.

The availability of electronic medical 
records and administrative datasets is en-
abling a wave of innovation with projects 
conducting health services research. In these 
studies, patients can be identified as being at 
increased risk for readmission [3], or their 
estimated length of stay at intensive care 
units can be modeled [17]. Many of these 
exercises of Big Data analytics require ad-
vanced computational frameworks for high 
data volume and intensive data processing. 
Dong et al [18] describe a Hadoop/Ma-
pReduce architecture for large scale clinical 
informatics applications highlighting its 
intrinsic advantages, including scalability, 
fault tolerance and high availability. 

As far as clinical applications are con-
cerned, Big Data methods, in conjunction 
with mobile technologies, can enable med-
ical specialists to read patients’ signals and 
images remotely, as well as store, deliver, 
retrieve and manage diverse medical files 
for teleconsultation and telediagnosis [19].  
Cloud computing service architecture has 
been used to support analysis of Big Data 
in Epilepsy with good results [20].  

Clinical and administrative data quality 
improvement represents a major concern in 
terms of the implementation of large health 
data repositories. To define more systemati-
cally electronic data quality, Dixon et al [21] 
propose a novel framework for data stew-
ardship. This framework applies a systems 
approach to data quality with a particular 
emphasis on health outcomes. 

The area of patient safety represents a 
great opportunity for Big Data, and sits at 
the intersection of clinical and administra-

tive data. For instance, Chai et al [22] used 
statistical text classification to identify health 
information technology incidents within 
large databases.

Population and Global Health and 
Policy Applications
Occupational and environmental medicine 
has also been impacted by the developments 
in the Big Data space. The article by Sep-
ulveda [23] reinforces the need to engage 
systems in communities for healthier work-
forces. Data linkage is a basic mechanism to 
integrate disparate data sources and enable 
biomedical research. The need to balance 
privacy protection concerns with the benefits 
derived from creating large data repositories 
was addressed in [24]. The authors report the 
development of a computerized third-party 
linkage platform for privacy-preserving and 
interactive record linkage. 

Hay and colleagues [25] discuss the poten-
tial and challenges of producing continually 
updated infectious disease risk maps using 
diverse and large volume data sources such 
as social media. Lastly, in their 2012 article, 
Jalali et al present how leveraging cloud 
computing can contribute to address public 
health disparities. Through Big Data analytics, 
predictive modeling and cloud computing, 
they suggest an environment where emerg-
ing public health threats can be observed in 
real-time and reported to policy makers [5].

4   Unstructured Textual Big 
Data Sources in Health and 
Biomedicine
While images, and audio or video streams 
will play an important role in Big Data an-
alytics for biomedicine, probably the most 
utilized large-scale source of unstructured 
information in the medical context to date 
is natural language text, i.e., documents that 
are written in human language (as opposed to 
computer language) and intended for com-
munication of information among humans. 
There are a plethora of textual data sources in 
medicine, perhaps most obviously in EHRs 



IMIA Yearbook of Medical Informatics 2014

17

Big Data in Medicine Is Driving Big Changes

that contain substantial clinical narrative in 
free-text form, but also radiology and histopa-
thology reports, nursing triage notes, clinical 
letters, discharge summaries, and so forth. 

There are three primary sources of texts 
in biomedicine that have been explored in 
large-scale studies, and that we will review 
here: (1) the published biomedical literature 
(e.g., journal articles), (2) electronic health 
records, and (3) social media and other Web-
based sources. Computers can access the 
information in these texts, e.g. through appli-
cation of natural language processing tech-
niques that make use of linguistic regularities 
in the text (for example, the domain-tailored 
clinical Text And Knowledge Extraction 
System, cTAKES [26]), or through strategies 
for the recognition of controlled vocabulary 
terms (e.g., the popular MetaMap program 
for the recognition of Unified Medical 
Language System terms [27]). An overview 
of methods and systems can be found in a 
recent book chapter [28]. Extraction of key 
concepts and relations from a text effectively 
provides a representation of the content of 
that text and facilitates searching, compar-
ison, and aggregation of information from 
many texts. Methods to retrieve and classify 
texts from EHRs can be used to improve the 
identification of patients meeting criteria 
for a clinical trial [29], prioritization of the 
information relevant to a given topic in the 
literature [30, 31], and clinical question 
answering [32]. These complementary 
text-processing strategies can be combined 
in innovative ways to facilitate access to and 
analysis of text-based information.

Published Biomedical Literature
The published biomedical literature, as 
indexed in PubMed, can be considered to 
be the primary repository of biomedical 
knowledge. While there are increasing 
numbers of structured resources available in 
biomedicine, the source data for many data-
bases and web portals is often the published 
literature. It typically requires manual effort 
to identify relevant literature, and extract 
and structure the information. Such manual 
effort is unsustainable given the exponential 
growth of the literature [33, 34]. To date, 
over 23 million articles have been indexed 

in PubMed, with nearly one million publi-
cations added in 2013 alone (924,687 as of 
December 24, 2013). This growth has driven 
substantial effort towards the development of 
tools for information retrieval and informa-
tion extraction from the relevant literature6. 
Text mining applications that exploit this 
substantial data source have become an inte-
gral component of biomedical data analysis 
and contribute to knowledge discovery and 
hypothesis generation [35, 36].

One specific area of focus has been the 
use of text mining for the interpretation of 
molecular biology and genomic data, includ-
ing genes, proteins, cells, tissues and whole 
organisms, with a range of applications to 
gene expression data [37], genome-wide as-
sociation studies [38, 39], pharmacogenom-
ics [40], interpretation of genetic variants 
such as singular nucleotide polymorphisms 
(SNPs) [41, 42], and systems biology net-
work modeling [43]. These bioinformatics 
applications will have increasing relevance 
to the clinical context through personalized 
medicine, as the molecular-level understand-
ing of diseases impacts diagnosis and drug 
treatment protocols [44]. 

Systematic reviews of the literature play a 
particular role in supporting evidence-based 
medicine [45], and text mining has been de-
ployed in several ways to support systematic 
reviews, including retrieval of documents, 
identification of key sentences or phrases, 
and evidence synthesis [46, 47]. In a recent 
study, large-scale text mining was used for 
screening and selection of articles for inclu-
sion in a systematic review, enabling a reduc-
tion of manual screening workload of up to 
a remarkable 90% [30]. While there remains 
work to be done to support sophisticated 
statistical meta-analyses across studies with 
text mining, the foundational technologies 
show substantial promise.

Clinical Narratives in Electronic 
Health Records
Increasing adoption of electronic health 
records is enabling a paradigm shift in the 

6 A list of biomedical literature search and 
retrieval tools is maintained at http://www.
ncbi.nlm.nih.gov/CBBresearch/Lu/search/ 

practice of evidence-based medicine, where 
the concept of practice-based evidence has 
emerged [15, 48]. In this paradigm, the re-
cord of practice is consulted as a source of 
evidence for monitoring clinical outcomes 
such as drug safety or the impact of specific 
treatments for particular types of patients, 
characterized by shared characteristics such 
as disease co-morbidities, age, or treatment 
history. Medicine is still practiced in an 
evidence-based manner, but the source of 
evidence can be broadened from the pub-
lished experimental literature to the “natural 
experiment” (i.e., an empirical, typically 
observational, study in which experimental 
conditions are out of the control of research-
ers) of real patients in the broad population.

Text mining plays an important role in 
supporting this paradigm, as so much of the 
data available to provide evidence is available 
in the narrative of EHRs. Jensen et al provide 
a detailed review of both the great potential 
of the EHR for supporting clinical care, while 
highlighting some of the ethical, legal and 
technical challenges of working with EHR 
data [49]. Both small-scale and large-scale 
studies of EHRs have emerged that indicate 
the strong role that analysis of the content of 
EHRs can play in supporting extraction of 
practice-based evidence. Indeed, early work 
on breast cancer utilized manual analysis of 
EHRs (in the form of the Utah Population Da-
tabase) to support genetic studies of the dis-
ease, leading to the discovery of the BRCA1 
and BRCA2 genes [50]. Text search of the 
Stanford Translational Research Integrated 
Database Environment (STRIDE) [51] has 
been used to enable electronic chart review to 
identify the appropriate treatment course for a 
patient with a complicated presentation [52]. 

Textual parts of EHRs have been used 
for pharmacovigilance [53, 54], drug safety 
profiling [55], and recruitment and strat-
ification of patients in clinical trials [56, 
57]. The most recent studies [53, 55] have 
considered records from millions of patients, 
and converted the unstructured text content 
into structured records, utilizing simple 
vocabulary recognition strategies. Using 
data from real patients undergoing active 
treatment, coupled with text processing and 
sophisticated statistical analyses, the analysis 
of EHRs enable drug safety surveillance at 
an unprecedented scale.
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A recent special focus issue of the Journal 
of the American Medical Informatics Issue 
(JAMIA) was dedicated to EHR-driven 
phenotyping (JAMIA, December 2013, 
Volume 20, Issue e2). The editors highlight 
the recent transition from the use of the EHR 
for clinical decision support to the use of the 
EHR directly for research [58], and a number 
of the articles make use of natural language 
processing to process unstructured content 
in the EHR for phenotyping [59-63]. 

The use of EHR data for research and 
analysis purposes is growing at such a rate 
that we acknowledge we have had to leave 
many quality studies unmentioned. Despite 
these oversights, this work is relatively 
recent, and it is clear that we have only 
scratched the surface in identifying questions 
that might be asked of this data, and in de-
veloping strategies for taking advantage of 
the content of this rich clinical information 
resource. Furthermore, given that texts in 
the EHR are unlikely to be replaced with 
fully structured data [64], natural language 
processing and text processing will provide 
important enabling technologies for this 
growing body of work. As stated by Shapiro 
et al [65], “Much of the meaning and infer-
ence that can be gleaned by the clinician 
through the use of narrative is lost when a 
rigidly structured template is used, and the 
ability to communicate complex ideas in an 
efficient and fluid manner diminishes.” By 
developing methods to extract and make use 
of this complex clinical narrative on a large 
scale, we will enable much more nuanced 
analysis of patient health through the EHR 
and ultimately form a more complete picture 
of complex sets of characteristics that impact 
on the diagnosis and treatment of diseases.

Social Media and the Web
Social media sources, including on-line dis-
cussion forums, social networking sites and 
twitter feeds, as well as more general World 
Wide Web resources such as blogs and even 
search query logs are also valuable informa-
tion resources for certain health applications. 

Public health officials, for instance, can 
benefit from the monitoring of these on-line 
sources for evidence of disease outbreaks. 
An early publication in this area focused 

on tracking trends in Google query logs 
to detect influenza activity in specific geo-
graphic regions with large populations of 
web search users [66], and many extensions 
of this initial study have appeared since, as 
recently reviewed by Polgreen and Velasco 
[67]. According to that review, most au-
thors recommend that social media-based 
surveillance should support rather than 
supplant other surveillance programs due 
to some noise in the methods, but the meth-
ods have the advantage of enabling rapid 
detection of disease. While there are earlier 
studies than the Google-based work [66], 
that study was able to exploit a substantially 
larger set of data – hundreds of billions of 
searches from 5 years of Google web search 
logs – resulting in more comprehensive 
models and finer-grained estimates of flu 
activity in different regions. The scale of 
the study was the largest of its kind to that 
point, and illustrates the “unreasonable 
effectiveness of data” [68]. More recently, 
on-line news sources [69] and Twitter have 
been explored as a data source for epidemic 
or syndromic surveillance [70, 71], with 
the potential of outperforming query-based 
search analyses.

Another area where social media has 
been explored for health is in the monitor-
ing of adverse drug events. On-line medical 
discussion forums in particular have been a 
focus of several studies aiming to identify 
adverse drug effects from patient or caregiv-
er reports of drug reactions in their on-line 
communications [72, 73]. As with disease 
surveillance, large-scale search query logs 
have also been shown to provide valuable 
information about adverse drug events, in 
particular reactions caused by specific drug 
combinations [74].

5   Conclusions
In this review, we have explored the growing 
use of Big Data in health and biomedicine. 
We described applications of Big Data 
divided into two groups, according to two 
distinct types of data, i.e., structured and 
unstructured data. However, we are well 
aware that in the future we will see more 
and more examples of applications that 

integrate both types of data. The effective 
integration of diverse data types poses a 
substantial challenge to current methods. 
This issue is expressed well by Mudunuri 
[75], who stated, “In order to achieve useful 
results, researchers require methods that 
consolidate, store and query combinations 
of structured and unstructured data sets 
efficiently and effectively”. An early example 
of the application of Big Data principles to 
integrated structured and unstructured data 
can be found in [6], where tumor images and 
tumor mathematical parameters are jointly 
analyzed with a clinical prognostic purpose. 
Analytical methods that can simultaneously 
handle numerical, discrete, and categorical 
data, or integrate features from several mo-
dalities and data types – and can do so in the 
context of unprecedented data volumes – are 
still largely undeveloped.

There are still many unknowns around 
the practical use of Big Data in medicine. 
It has been said that our ability to produce 
data outpaces our ability to analyze it. This 
in turn raises issues related to the workforce 
and the need to train a new generation of 
data scientists with new skillsets including 
mathematics and statistics, IT, informatics 
and computer science, in combination with 
biology and medicine. Some people have 
begun talking about the value of Small Data 
(e.g., those generated by individuals through 
self-monitoring devices and apps). There 
also exist important challenges in the areas 
of privacy and security [76]. However, we 
cannot afford to have so many sources of 
data stored in different places, without the 
possibility of using them in research projects 
to improve our delivery of health services 
and our understanding of disease.

This article has highlighted the notable 
changes that are happening in clinical 
practice and biomedical research, enabled 
by both the increasing amounts of data that 
are being produced, and the development of 
innovative technical approaches to harness-
ing the information available in that data. 
The shifts to practice-based evidence for 
medicine, and data-driven rather than strictly 
hypothesis-driven biomedical research, 
represent the Big Changes driven by Big 
Data. It is an exciting time to be working 
at the interface between informatics and 
biomedicine.
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