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Summary
Objectives: To review technical and methodological challenges 
for big data research in biomedicine and health.
Methods: We discuss sources of big datasets, survey infrastruc-
tures for big data storage and big data processing, and describe 
the main challenges that arise when analyzing big data. 
Results: The life and biomedical sciences are massively contrib-
uting to the big data revolution through secondary use of data 
that were collected during routine care and through new data 
sources such as social media. Efficient processing of big datasets 
is typically achieved by distributing computation over a cluster 
of computers. Data analysts should be aware of pitfalls related 
to big data such as bias in routine care data and the risk of 
false-positive findings in high-dimensional datasets.
Conclusions: The major challenge for the near future is to 
transform analytical methods that are used in the biomedical 
and health domain, to fit the distributed storage and processing 
model that is required to handle big data, while ensuring confi-
dentiality of the data being analyzed.
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1   Introduction
Big Data are driving a revolution in infor-
mation and communication technology. 
Technological advances in nano-electronics, 
interconnectivity, and information-sens-
ing devices are generating unprecedented 
amounts of data. These data collections 
become so large and complex that they can 
no longer be processed using traditional data 
management and analysis tools. 

Big Data are encountered in diverse areas 
such as meteorology, finance, experimental 
physics, telecommunication, military surveil-
lance, business informatics, environmental 
research, and social media. Also the life and 
biomedical sciences are not shielded from – 
and in fact, already massively contributing 
to – the big data revolution, due to advances 
in genome sequencing technology and digital 
imaging, growth of clinical data warehouses, 
increased role of the patient in managing his 
own health information and rapid accumula-
tion of biomedical knowledge. 

In this paper we review the main technical 
and methodological challenges for big data 
in biomedicine and health. We first focus on 
the various sources of big datasets, which 
range from traditional data collections, such 
as medical records and administrative data, 
to novel sources of information such as web 
search logs and social media. Subsequently, 
we review infrastructures for data storage and 
data processing, and discuss how these can be 
utilized to build analytic pipelines. Finally, 
we review analytical challenges associated 
with big data in biomedicine and health, 
such as selection of cases and controls, bias 

and confounding in observational data, and 
techniques for mining high-dimensional data. 
We conclude with recommendations for fu-
ture research. Two major subfields of big data 
in biomedicine, natural language processing 
(NLP) and biomedical image processing, are 
not covered in this review. We refer the reader 
to the excellent overviews by Meystre et al. 
[1], Friedman and Elhadad [2], Deserno [3], 
and Rubin et al. [4] for an in-depth discussion 
of these subfields.

2   Sources of Data
There are a large number of sources of big 
data, and these are growing in number and 
in the amount of data they contain. For the 
purposes of this paper, we focus on secondary 
data sources. Secondary data is defined as such 
in terms of its use, and thus one often hears the 
term “secondary use of data”; these two terms 
are essentially synonymous. The remainder 
of this section of the paper is dedicated to 
discussing specific sources of secondary data.

2.1   Medical Records
Medical records provide an excellent exam-
ple of data that were collected for a specific 
purpose (patient care), but used for other pur-
poses such as research or quality assurance. 
Medical record data have been a veritable 
treasure trove of clinical data, especially for 
retrospective research. The widespread adop-
tion of electronic health records (EHRs) offers 
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the hope of not only improving routine care, 
but also by providing easier access to clinical 
data for research purposes. 

Medical records contain an extensive 
array of data ranging from demographics, 
laboratory values, dispensed medications, 
imaging and other diagnostic data, clinical 
interventions, to clinical notes in free-form 
text. They are highly longitudinal, with 
repeated observations on patients and they 
reflect the size of the healthcare organiza-
tions whence they come. 

An especially appealing vision is to in-
tegrate EHR data with genomic, proteomic, 
and metabolomic information, enabling the 
discovery and testing of new genotype-pheno-
type associations. Because EHRs contain large 
populations with diverse diseases, they have the 
potential to act as platforms for generating sets 
of cases and controls for translational research. 
Ultimately, such integrated datasets can facili-
tate personalized medicine through advanced 
decision support technology.

Medical records present a number of 
challenges to researchers. These include data 
quality, data heterogeneity, and preservation of 
confidentiality and privacy of providers as well 
as patients. As with any secondary data source, 
it is important to remember that these data were 
not collected for the purposes of research; 
rather, they were collected for patient care. 
Thus it is often the case that medical record 
data do not provide the information needed 
for secondary use; in addition, data may be 
missing or inaccurate. Furthermore, exposure 
to clinical therapies will be confounded by 
disease severity, hampering inference on the 
causal effect of these therapies on health out-
comes. Finally, medical record data must be 
used in a way that preserves the confidentiality 
and privacy of patients while still allowing 
users to identify patients over time. This is 
impossible to accomplish if the very difficult 
issue of entity resolution is not addressed suc-
cessfully. Entities, such as individual patients 
or clinical encounters- in short, anything in 
the clinical enterprise about which data are 
recorded- can be difficult to track throughout 
a medical record database. For example, a 
given patient might have several (or more) 
medical record numbers. Or a given medical 
record number could represent two or more 
patients. While conducting a retrospective 
cohort study, where tracking the progress 

of patients over time is quintessential to the 
study design, such inconsistencies can pose 
an insurmountable obstacle. Resolution of 
entities, through the use of such approaches 
as a master patient index (MPI), is required to 
address this problem, yet in many systems the 
MPI has not been implemented, often because 
of the cost and effort required to do so, as well 
as possible concerns about preserving patient 
confidentiality. Another approach is to establish 
a system of ad hoc proxy identifiers that are 
implemented for a specific purpose. This is in 
contrast to the MPI, which is globally applied 
across all medical record systems in a given in-
stitution. However, it is a very time consuming 
and potentially inaccurate approach, given that 
such identifiers (typically called Study ID or ID 
Number) are not usually applied by those with 
specific training in large clinical databases but 
by clinical researchers. Ideally, the MPI is the 
best way to establish entity resolution, but the 
process of implementing and maintaining an 
MPI system needs to be monitored constantly 
to ensure compliance with policies and proce-
dures governing the MPI.

2.2   Administrative Data
The amount of clinical data across the 
healthcare landscape is equaled only by ad-
ministrative data. Such data typically focus 
on insurance or other claims for payment, 
and may include diagnoses, procedures, and 
medications and devices. Thus, we use the 
term “administrative data” to describe those 
that are not primarily clinical, but which may 
contain data that are related to the clinical 
enterprise. These data are generated as a result 
of patient encounters and consist primarily 
of billings which are based on diagnosis and 
procedure codes, typically ICD-9-CM or 
ICD-10. While EHR data are often available 
immediately or within 24h, administrative 
data involve a delay because they build on 
diagnostic codes that are assigned after dis-
charge. Claims data also have minimal clinical 
information than EHR data. 

While administrative data at first might 
appear to be not particularly informative, they 
are the one resource that contains diagnosis 
and procedures in a form that is easily que-
ried and analyzed. Researchers can use these 
data to identify and build cohorts of patients 
for various studies. Access to administrative 

data is essential not only for the research 
enterprise but also those working in quality 
improvement, patient safety, and surveillance. 

The challenge of working with administra-
tive data is threefold. First, there is a lot of it, 
even for a single patient. Consider US Medi-
care claims data, which contains a record for 
each and every transaction with the healthcare 
system. A second challenge is that creating a 
simple analytic file from such data can be very 
difficult when there are many multivalued 
attributes and repeating groups, and even 
composite attributes that must be decomposed 
to be useful in an analysis. Finally, because 
of the lack in clinical detail, administrative 
data are seldom useful by themselves for an-
swering most research questions. A common 
solution is to link them to clinical and other 
healthcare data so that meaningful analyses 
can be performed. However, record linkage 
can be difficult if linking fields such as iden-
tifiers are not readily available in the data, or 
if there are errors in the identifiers, or if they 
don’t match identifiers in other resources that 
need to be linked to the administrative data. In 
addition, linking administrative and clinical 
or other data may be forbidden by data use 
agreements or general use policies.

2.3   Web Search Logs 
An increasing number of people use the Inter-
net to seek health information before they visit 
their doctor [5]. Systematically collecting and 
analyzing these health-related web searches 
has been shown to have considerable potential 
for syndromic surveillance, the analysis of 
health-related data to forecast a disease case or 
outbreak that warrants public health response 
[6]. Traditional systems for syndromic sur-
veillance rely on data from clinical encounters 
with health professionals or pharmacy data [7]. 
For conditions where consumers consult the 
Internet before they visit a physician, system-
atic mining of web searches may be a valuable 
addition to traditional approaches. Recently, 
web search logs were also shown to be useful 
for the detections adverse events associated 
with pharmaceutical products [8].

2.4   Social Media
Researchers and others are increasingly 
turning to social media as a source of data. 
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Discussion boards, blogs, Twitter, and other 
social networking resources provide extreme-
ly rich sources of data that can be mined for 
identifying previously unreported drug side 
effects, monitoring health beliefs and behav-
iors, and disease outbreaks. With as many as 
500 million tweets per day, the Web provides 
a virtual flood of data [9]. These sources pose 
unique challenges. For example, the language 
that is used on social media is not standard, 
being replete with abbreviations, graphics, 
emoticons, and typographical errors. This 
poses a substantial challenge for extracting 
meaningful information from these data. 
Second, user agreements often prohibit the 
secondary use of these data, although some 
sources such as Twitter allow sampling 
of substantial numbers of records. Third, 
de-identification of the data poses a very 
substantial challenge. Stripping the names of 
people or places from Web communications 
can be done using controlled vocabularies, 
but this becomes much more difficult when 
nicknames or abbreviations are used. Finally, 
even if text in a Web communication is easily 
parsed and analyzed, there is no guarantee that 
the communication is truthful or accurately 
expresses what the poster wanted to say.

3   Infrastructure
The primary computational challenge related 
to big datasets concern their size (volume). 
However, additional important challenges 
relate to the speed with which they are 
gathered and should be processed (velocity), 
and the diversity of the data itself (variety). 
Efficient processing of big datasets is typi-
cally achieved by distributing computational 
tasks over a cluster of computers. In order to 
achieve this, the data itself must be stored in 
a distributed fashion. The Hadoop Distributed 
File System (HDFS) and the associated Ma-
pReduce algorithm are well-known examples. 
While Hadoop is typically aimed at process-
ing the data in batch, more recently real-time 
distributed processing systems have emerged. 
Below, we introduce these technologies in 
more detail and describe existing and poten-
tial applications in the biomedical domain. 

For clinical researchers, all these infrastruc-
tures provide new opportunities to conduct 

large-scale research in a speedy fashion. Many 
research have started using such infrastructure 
in various biomedical applications such as 
bioinformatics and genomic analysis [10], im-
age informatics [11], and clinical informatics 
[12,13]. In particular, researchers can consider 
moving large research datasets into NOSQL 
paradigm instead managing traditional file 
system on a single machine. There are software 
tools such as Sqoop (http://sqoop.apache.
org/) for converting traditional database into 
NOSQL infrastructure like HDFS.

3.1   Storage
3.1.1    File Systems
HDFS is a distributed file system designed 
to run on commodity hardware, where a 
data file is replicated on different servers 
for reliability purposes. Another benefit is 
locality because Hadoop prefers data and 
computation to be co-located on the same 
machine. Typically, HDFS stores data in raw 
format such as text or image files, but access-
ing files within HDFS requires special tools. 
HDFS has been used for storing biomedical 
data such as electrophysiological data [13]. 

Amazon’s Simple Storage Service (S3) is 
used to store data for services in Amazon 
Elastic Compute Cloud (EC2), which include 
•  Content Storage and Distribution: i.e. 

store media files for a website;
•  Storage for Data Analysis: i.e. Elastic 

MapReduce load data from S3;
•  Backup, Archiving: store a copy of files 

in the cloud;
•  Static Website Hosting: similar to content 

distribution, upload the html, js files to the 
cloud.

The purpose of S3 is similar to HDFS but 
aimed at processing tasks that are run on 
the Amazon cloud. Researchers have used 
Amazon S3 for storing genome sequence 
data [10,14].

3.1.2   Database Systems
Besides simple file storage, users require 
efficient query and retrieval capabilities. 
Database systems provide such capabilities. 
For big data, relational databases are not 
preferred because 1) the data volume is often 

too big for most relational databases; 2) the 
data are too heterogeneous and complex to fit 
into a predefined schema. Therefore NoSQL 
databases are preferred, which aim at handling 
big data without rigid definition of schema. 
We cover three different NoSQL databases: 
Dynamo (a key-value store), MongoDB (a 
document store), and HBase (a column store). 
Each of them provides flexible and efficient 
mechanism for querying data. 

DynamoDB is a proprietary NoSQL 
database service developed by Amazon. In 
DynamoDB, a database is a collection of 
tables. And a table is a collection of items and 
each item is a collection of attributes. Unlike 
in traditional, relational databases, individual 
items in DynamoDB can have an arbitrary 
number of attributes. In healthcare applica-
tions, a patient can have multiple encounter 
records with various attributes, which can be 
easily captured in a DynamoDB. For exam-
ple, one record can have only one diagnosis 
and one medication, while the other have 
multiple diagnoses, medications, lab results 
and imaging results. DynamoDB integrates 
well with Amazon Elastic MapReduce, where 
computation is automatically scaled up and 
down, based on the workload requirements 
from the analytics. 

MongoDB is an open-source docu-
ment database, which is tailored for storing 
JavaScript Object Notation (JSON) objects. 
Since JSON is widely used on the web, 
MongoDB is popular as the backend for 
large-scale web applications. MongoDB 
also has well-supported integration with 
Hadoop. One may use MongoDB as an in-
put source and/or an output destination for 
Hadoop jobs. Like DynamoDB, MongoDB 
does not require a fixed schema. MongoDB 
is suitable for storing both unstructured data 
like clinical notes as well as structured data, 
like diagnostic and medication information 
of patients. For example, lociNGS uses 
MongoDB for handling genomic data [15].

HBase is an Open Source version of Big-
table [16] and is compatible with Hadoop and 
HDFS. Data in HBase (or Bigtable) are orga-
nized as rows, columns, column families and 
timestamps. HBase is suitable for random, 
real-time read/write access to big data sets. 
HBase also provides an easy way to manage 
data with multiple versions. For example, 
since each patient may have multiple encoun-
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ters, the analytics can track the last three visits 
of each patient easily using HBase thanks to the 
timestamp associated with each row.

3.1.2   Privacy and Security Considerations
Cloud computing and storage have tremen-
dous impact in many industries including 
healthcare. Many of such technologies enable 
faster and more efficient data sharing. Data 
in healthcare are sensitive where patient pri-
vacy needs to be protected. Laws have been 
passed including Health Insurance Portability 
and Accountability Act (HIPAA) and Health 
Information Technology for Economic and 
Clinical Health Act (HITECH), which both 
provide privacy regulations on Protected 
Health Information (PHI). Rosenthal and et 
al. [17] have systematically compared cloud 
computing technology and traditional internal 
environment for supporting biomedical appli-
cations. Besides all the benefits and flexibility 
that a cloud provides, they found also that 
there are more security risks associated with 
traditional environments as opposed to cloud 
environments. Nevertheless, security and 
privacy concerns still require better protection 
schemes in the cloud for biomedical data, 
especially on technologies around encryption 
and access control. Major cloud vendors such 
as Amazon have made strong commitment 
and progress in this direction for supporting 
HIPAA compliant applications [18]. 

3.2   Processing
The Hadoop ecosystem is the most popular 
and widely used for processing big data-
sets, but it is primarily intended for batch 
processing of large datasets. Alternative 
technologies aim at use cases other than 
batch processing such as real-time stream 
processing and in-memory computation. 

3.2.1   Batch Processing with the Hadoop 
Ecosystem
Hadoop uses the MapReduce programming 
model, described in the seminal paper by 
Dean and Ghemawat [19]. It is designed for 
processing huge data sets such as web logs, 
and is tightly coupled to HDFS. MapReduce 
provides a simple but powerful abstraction for 
many data processing tasks such as web crawl-

ing and indexing. Beyond the original search 
engine related applications, MapReduce has 
been used in a large number of other domains. 
Also many systems have been developed on 
top of Hadoop to simplify implementation of 
complex tasks (e.g., Oozie, Cascade, described 
below) and to provide additional functionalities 
(e.g., Mahout, a machine learning library). 

Oozie is a workflow engine specialized in 
dealing with Hadoop jobs. A workflow is a 
collection of actions (i.e. Hadoop MapReduce 
jobs) arranged in a directed acyclic graph 
that specifies the tasks dependency. Oozie 
workflow actions start jobs in remote systems, 
which notify Oozie when they are finished. At 
this point Oozie proceeds to the next action 
in the workflow. Oozie can thus function as 
the workflow engine in big data analysis pipe-
lines. Similar to Oozie, Cascading is another 
popular high-level abstraction on Hadoop 
that handles dependency among tasks. For 
example, the PARAMO system [20] provides 
a scalable system for computing a large num-
ber of clinical predictive modeling pipelines 
using electronic health records, which can be 
implemented in either Oozie or Cascading. 

Pig is a high-level data processing tool that 
also runs on top of Hadoop. Pig commands 
are written in a language called Pig Latin. 
The Pig system converts those commands 
into Hadoop jobs. Pig was originally devel-
oped at Yahoo but later published as open 
source. Pig is used primarily as an ETL tool 
for processing big data, and has therefore 
potential applications in DRNs. Because the 
heterogeneity of source data in DRNs can be 
challenging, Pig can be used to efficiently 
convert the source data into the DRN schema.

3.2.2   Non-Hadoop Alternatives
Storm is a distributed real-time computation 
system. Its topology is a DAG with so-called 
spout and bolts, where spouts generate tuples 
from input streams, and bolts process those 
tuples in real time. For streaming analytic 
applications, Storm can be extremely import-
ant. Storm has been used heavily in Twitter, 
for which real-time analytics are essential. 

Spark is a very fast, distributed computing 
framework, which supports in-memory com-
puting. Spark was initially developed for two 
applications where placing data in memory 
helps: iterative algorithms, which are common 

in machine learning, and interactive data min-
ing. Spark provides interfaces to HDFS and 
MapReduce but also supports streaming data. 
On top of Spark, Shark is a data warehouse 
similar to Hive with friendly integration of 
machine learning algorithms [21].

GraphLab [22] provides a high-level 
graph-parallel abstraction that efficiently 
and intuitively expresses computational de-
pendencies. GraphLab provides three phases 
of abstraction: Gather, Apply, and Scat-
ter (GAS). With these abstractions, many 
machine learning algorithms can be easily 
implemented, especially for graph analy-
sis, graphical models etc. 

4   Analytics
When we analyze big datasets, their high 
volumes are not just inducing computational 
challenges but also create analytical pitfalls. 
Furthermore, the velocity of big data urges 
the need to avoid manual steps in the ana-
lytical pipeline. The variety that is typical 
found in big datasets, finally, creates the 
need to further integrate statistical, machine 
learning, NLP and semantic methods. Be-
low, we illustrate these issues by describing 
three common analytical challenges that are 
associated with the use of big data in the 
biomedical and health domain. 

4.1   Patient Selection from EHR 
and Administrative Data
A principal analytical challenge that is asso-
ciated with the secondary use of clinical and 
administrative data for research purposes is 
the selection of relevant patients [23]. There 
rarely exists a single data item that can be 
used to identify all patients that satisfy a given 
diagnostic criterion. Instead, one must often 
combine queries on coded, numerical, and 
free-text data using NLP techniques. Further-
more, there are often risks of selection bias in-
volved. For instance, when certain subgroups 
of the underlying population systematically 
undergo more complete medical evaluation, 
these subgroups tend to be over-represented 
in diagnostic incidence rates -- a phenomenon 
known as diagnostic sensitivity bias [24].
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Typically, algorithms for selecting relevant 
patient records are constructed by combining 
clinical expertise and knowledge of the data 
sources at hand. However, Tessier-Sherman 
and colleagues found that a carefully con-
structed algorithm for identifying hyperten-
sive patients from claims data only found 43-
61% of patients with elevated blood pressure 
values in their medical charts [25]. Ritchie 
et al. describe a solution for this problem, 
which consists of a sophisticated, iterative 
approach to algorithm construction [26]. In 
their approach, clinical experts are consulted 
to develop an algorithm that selects cases 
via disease-specific combinations of billing 
codes, patient encounters, laboratory data, 
and NLP techniques on unstructured patient 
records. Subsequently, the results of applying 
the algorithm are reviewed by physicians who 
were not involved in algorithm development, 
and their feedback is used to improve the 
algorithm. This is repeated until the accuracy 
of the algorithm is considered satisfactory.

4.2   Bias and Confounding in 
Observational Data
Another challenge concerns the analysis of 
data that were gathered during routine care, 
and not under experimental conditions such 
as a randomized controlled trial. This means 
that all diagnostic and therapeutic procedures 
were only conducted when they were deemed 
necessary for the patient in question [27]. For 
instance, when respiratory failure is observed 
in hospitalized pneumonia patients, they are 
admitted to intensive care unit (ICU) for me-
chanical ventilation. But the mortality among 
these patients is higher than among patients 
without respiratory failure − who are not 
sent to the ICU. A naive approach to analyze 
data from hospitalized pneumonia patients 
may lead to the biased conclusion that ICU 
admission reduces the chances of survival.

The traditional approach to avoid this 
type of bias is to identify known confounders 
(e.g. demographic variables, diagnosis, and 
illness severity) and adjust for them either by 
conditioning or by propensity scoring [28]. 
However, the identification of confounders 
is a manual step, which is preferably avoided 
in big data applications. Furthermore, some 
of these confounders may be lacking in data 

(especially in claims data), and there may 
also exist unknown confounders.

Novel, data-driven approaches therefore 
use search techniques to identify variables 
that are both associated with the interven-
tion and the outcome, but could not have 
occurred later in time than the intervention. 
For instance, De Vries et al. [28] investigated 
the effect of cardiac rehabilitation on sur-
vival using a large Dutch insurance claims 
database. Cardiac function is a well-known 
confounder of survival in this context, but 
was missing from the data. Instead the authors 
used all available information, comprising 
hospital diagnoses-treatment combinations, 
outpatient prescriptions, medical devices, the 
occurrence of lab tests, GP visits, ICU days 
and other services, to construct a large set of 
proxies for cardiac function and other poten-
tial confounders. Subsequently, generalized 
boosted regression [29] was used to estimate 
a propensity function, i.e. the probability of 
receiving cardiac rehabilitation as a function 
of 99 selected variables. The treatment effect 
was estimated by weighting all observations 
for patients who did not receive cardiac reha-
bilitation by the inverse of the propensity score.

4.3   Finding Associations in 
High-dimensional Data
As data sets grow in the number of variables 
that they contain, the task of finding associ-
ations with diseases or health outcomes be-
comes more difficult because there are higher 
risks of chance findings. For instance, with 
the conventional threshold for statistical sig-
nificance of 0.05, a genome-wide association 
study that involves 500,000 single-nucleotide 
polymorphisms (SNPs) will yield 25,000 
false-positive associations, within which are 
buried a few genuine causal alleles. From 
one perspective, this is a classical “multiple 
testing” problem, and the traditional solution 
is to adjust the threshold for statistical signif-
icance. For instance, Risch and Merikangas 
proposed to use a significance threshold of 5 
x 10–8 (equivalent to a p-value of 0.05 after 
a Bonferroni correction for 1 million inde-
pendent tests) in genome-wide association 
studies [30]. However, to detect an allele 
with a frequency of 15% and associated odds 
ratio of 1.25, we would need nearly 6,000 

cases and 6,000 controls with this threshold. 
For 500,000 independent SNPs, the required 
sample size would be 6 billion [31].

An interesting alternative to Bonferroni 
correction that is increasingly applied in such 
situations, is permutation testing. Bonferroni 
correction is not informed by the data at 
hand, and therefore assumes a “worst case” 
scenario. Permutation testing can empirically 
assess the probability of having observed a 
particular result by chance, in the dataset that 
is being analyzed. Permutation tests shuffle 
case and control labels in the data, and 
therefore no meaningful association can be 
observed in permuted data. The lowest p-val-
ues observed in the permuted datasets, which 
represent the strongest apparent chance 
finding, represent a null distribution with 
which p-values from the original data can be 
compared. Interestingly, permutation testing 
can easily be implemented in a distributed 
processing system such as MapReduce.

Another alternative to Bonferroni cor-
rection was used in the Google Flu Trends 
project [7,32]. Google designed an automated 
method for selecting influenza-related search 
queries, requiring no previous knowledge 
about influenza. Fifty million search queries 
were separately tested for their correlation 
with data from the CDC’s US Influenza 
Sentinel Provider Network, independently in 
nine different geographical regions. The risk 
of false-positive findings was low because the 
chance that a random search query can fit the 
influenza percentages in nine regions is con-
siderably less than the chance that a random 
search query can fit a single location. The 45 
highest-scoring queries were combined to cre-
ate the final model that had a mean correlation 
of 0.90 over the nine regions.

5   Discussion
The electronic capture of biomedical and 
health data is quickly growing in many areas, 
providing new sources of information and 
new opportunities for answering health-relat-
ed research questions. The resulting datasets 
are “big” in size, in diversity, and in the speed 
with which they are gathered. This creates 
unprecedented challenges for storing, pro-
cessing, and analyzing these data. 
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In this paper we have reviewed the main 
technical and methodological challenges 
for big data researchers in biomedicine and 
health, focusing on the various sources of big 
datasets, different infrastructures for data stor-
age and data processing, and analytical chal-
lenges. Computer scientists have developed 
various technological solutions for storing and 
processing big datasets over the last decade. 
To date, the Hadoop ecosystem constitutes 
the most powerful and mature framework for 
handling big data, but is restricted to batch 
processing. To support real-time processing, 
new technologies such as Storm and Spark 
are emerging. A major challenge for the 
next years is to create efficient and robust 
implementations of analytical methods that 
are required for the biomedical and health 
domain, within these frameworks. This will 
require that existing analytical algorithms be 
transformed to fit the distributed processing 
model, while ensuring confidentiality of the 
data being analyzed.

Another recurring challenge when working 
with big data is the need to circumvent manual 
steps during any operation on the data, be it 
for storage, preprocessing, or analysis. This is 
particularly true when the number of variables 
(i.e., dimensions) of the dataset is large, and 
the step has to be carried out for each variable 
separately. Complete automation of the entire 
storage, preprocessing and analysis pipeline is 
then imperative, purely for reasons of feasibil-
ity. At the same time, there must be guarantees 
that the results from such analyses are accurate 
and reliable. This is another major issue for 
the big data research agenda in the next years.
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