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Summary
Objective: To provide a survey of recent progress in the use of 
large-scale biologic data to impact clinical care, and the impact 
the reuse of electronic health record data has made in genomic 
discovery.
Method: Survey of key themes in translational bioinformatics, 
primarily from 2012 and 2013.
Result: This survey focuses on four major themes: the growing 
use of Electronic Health Records (EHRs) as a source for genomic 
discovery, adoption of genomics and pharmacogenomics in clin-
ical practice, the possible use of genomic technologies for drug 
repurposing, and the use of personal genomics to guide care. 
Conclusion: Reuse of abundant clinical data for research is 
speeding discovery, and implementation of genomic data into 
clinical medicine is impacting care with new classes of data rarely 
used previously in medicine. 
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Introduction 
Since the completion of the first draft of 
the human genome project more than a 
decade ago, much has been learned about 
the structure of the human genome and the 
genomic architecture underlying common 
and rare human diseases and traits [1, 2]. 
Propelled by new sequencing technologies 
and massive populations for large-scale 
genetic studies, our understanding of the 
influence of genetics in rare and complex 
human traits has been increasing, yielding 
insights into thousands of diseases and trait 
[3, 4]. Translation of these discoveries in 
terms of clinical impact are more recent 
phenomena and the specific focus of the 
field of translational bioinformatics (TBI). 
This paper is a survey of several themes in 
TBI over the last several years.

As defined by Altman and Miller [5], TBI 
can be defined as the integration of basic 
molecular, genetic, or cellular data with 
clinical data for discovery or implementa-
tion. Summarizing recent developments in 
a field as diverse and large as TBI can be 
challenging. As a result, I first surveyed a 
number of TBI articles published primarily 
in 2012 and 2013 to generate a list of recent 
themes. Impactful papers relevant to TBI 
were “nominated” via four methods: papers 
nominated for or highlighted in Dr. Altman’s 
TBI “Year in Review” keynote presentations 
presented at the 2012 and 2013 AMIA 
Summit on TBI (slides available at http://
rbaltman.wordpress.com), nomination by 
one of ~20 noted investigators informally 
surveyed by email (they were asked for 
papers published in 2012 and 2013), and by 

my personal review of the field, including 
review of the submissions to the 2014 AMIA 
Summit on TBI. Thus, this survey doesn’t 
include all themes in TBI nor is systematic, 
and certainly omits a number of worthy 
papers and resources that could fall within 
the domain of TBI. 

After reviewing these papers, I selected 
four major themes. In two of these themes, 
Electronic Health Records (EHRs) play a 
key role. The first was the use of EHRs as 
a source for genomic discovery through the 
role of EHR-linked biobanks. The same 
techniques applied to EHRs are enabling 
other uses of EHRs for discovery as a source 
of clinical “Big Data.” The second theme is 
the adoption of genomics and pharmacog-
enomics as part of “routine” clinical care, 
in which EHRs also play a critical role. 
This theme was found in the 2013 AMIA 
Fall Symposium and 2014 AMIA Summit 
on TBI among presentations, panels, and a 
“Birds of a Feather” session. The third theme 
is the applications of omic technologies to 
feed drug discovery and repurposing. This 
aim includes seminal works that highlight 
the potential for these basic discoveries to 
impact clinical care. Finally, the fourth theme 
follows recent trends in personal genomic 
testing to guide current and future clinical 
care, including the changing landscape in Di-
rect-To-Consumer (DTC) genetic testing and 
recent legal challenges regarding BRCA1 and 
BRCA2 testing. This paper focuses primarily 
on papers published in 2012 and 2013, but 
selected papers before 2012 have also been 
included based on their particular relevance 
to these themes, to provide background, or 
to credit an idea or method. 
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Electronic Health Records 
as Big Data for Genomic 
Discovery
Use of electronic health record (EHR) data 
as a source for genomic discovery is a recent 
development but proving to be a powerful tool 
to investigate the genetic basis of disease and 
drug response. Following completion of the 
first human genome sequence in 2003, the first 
genome-wide association study (GWAS) was 
performed in 2005 and, by 2010, the count 
had reached 500 and covered a wide range 
of human diseases and traits [1]. Recognizing 
the potential of EHRs as a tool for genomic 
medicine, the National Human Genome 
Research Institute (NHGRI) established the 
Electronic Medical Records and Genomics 
(eMERGE) Network in 2007 [6], which was 
renewed in 2011 and currently includes 10 
sites with EHRs linked to DNA biobanks 
[7]. The first EHR-based genomic studies 
were published in 2010 [8-11]. At the end of 
2013, sites from the eMERGE network alone 
have published 35 studies using EHR data for 
genetic analysis. The work of eMERGE has 
highlighted the importance of an iterative cre-
ation-evaluation-refinement process to build 
“phenotype algorithms”, typically composed 
of elements from billing codes, medication 
data, laboratory and test results, and/or natural 
language processing applied to clinical doc-
umentation [12]. Many of these algorithms 
are available on http://phekb.org. Initial 
studies in the eMERGE network proceeded 
using data from a single site but the power of 
cooperative, multi-site studies was quickly 
realized and accomplished by repurposing 
existing genetic data with shared phenotype 
algorithms to identify more cases or to even 
perform entirely in silico genetic studies [13]. 
Indeed, this model was adopted for eMERGE-
II, in which all GWAS performed use extant 
genotypes.(7) Efforts within eMERGE [14] 
and SHARPn [15] have highlighted the 
possibility of creating standardized, comput-
able phenotypes; for now, these phenotypes 
algorithms are largely shared as descriptive, 
human-readable documents.

Pharmacogenetic studies have also been 
published using EHR data [16-18]. EHRs 
may constitute an important platform for 
pharmacogenetics research in that they pro-

vide a longitudinal collection of medication 
and disease exposures, and may allow for 
capture of rare and potentially fatal events 
when linked to prospective biobanks [19]. 
They may also be significantly faster, cheap-
er, and have the ability to accrue more pa-
tients than traditional methods of performing 
pharmacogenomic studies [20]. However, 
pharmacogenetic studies using EHR data can 
be complicated by incomplete knowledge 
of patient adherence, inaccurate medication 
start and stop dates, and the need to sequence 
multiple diseases and exposures to accu-
rately assess a pharmacogenetic phenotype.

EHRs have also provided the ability to ana-
lyze many diverse phenotypes. Phenome-wide 
association studies (PheWAS) provide a 
systematic approach to analyze phenotypes 
associated with a given genotype, and demon-
strate a paradigm shift toward looking at the 
phenome in a hypothesis-free manner, much as 
genomic investigation has done [21]. PheWAS 
often uses aggregations of EHR billing codes 
to define cases and controls [11]. In the last 
two years, much larger studies have been per-
formed to follow-up on GWAS discoveries and 
to analyze specific genetic variants of interest. 
PheWAS been performed within EHR data sets 
focused on genetic variants of interest [22] and 
also on follow up on GWAS results [13, 23, 
24]. PheWAS in conjunction with GWAS has 
noted associations not apparent in the GWAS; 
e.g., future development of atrial fibrillation in 
patients with variants associated with slower 
ventricular conduction [23]. A PheWAS of 
3,144 SNPs with prior GWAS associations 
using 13,835 individuals in the eMERGE 
network replicated 66% of sufficiently-pow-
ered known GWAS associations and found 
63 new, potentially pleiotropic, associations, 
the strongest of which were replicated in an-
other population [25]. The PheWAS approach 
has also been applied to non-EHR, popula-
tion-based studies. In a study of 70,061 study 
participants in the Population Architecture 
using Genomics and Epidemiology (PAGE) 
network, Pendergrass et al. studied 83 SNPs 
across 105 phenotype classes and identified 
111 SNP-phenotype associations that passed 
a nominal significance threshold in at least two 
sites; among these, 33 represented potentially 
novel findings [26]. Available tools should 
enable broader access to PheWAS in EHR and 
non-EHR datasets [25, 27]. 

Other large initiatives will dramatically 
increase the number of patients available in 
EHR-linked biobanks. The Veteran Affairs 
(VA) Million Veteran Program (MVP) aims 
to collect DNA from one million veterans 
treated at VA hospitals [28]. The primary 
source of phenotypic information for MVP 
derives from the VA’s extensive national 
EHR system that links all VA hospitals, 
clinics, and pharmacies. The Kaiser Perma-
nente Research Program on Genes, Envi-
ronment, and Health seeks to collect DNA 
on 500,000 individuals [29], and currently 
includes more than 100,000 individuals with 
genome-wide genetic data. The UK Biobank 
[30] and China Kadoorie biobank [31] have 
each created population-based longitudinal 
cohorts with over 500,000 individuals, each 
with detailed prospective questionnaires, 
sample collections, focused testings, and the 
potential for recontact. Importantly, these 
national biobanks are integrating EHR data 
from patients into their data repositories.

Use of Electronic Health 
Record Data for Non-
genomic Discovery
Genomic data is clearly not the only appli-
cation that has benefited from the secondary 
use of large-scale EHR data. LePendu et al. 
used natural language processing to mine full-
text clinical notes for detecting drug–adverse 
event associations and for detecting drug–
drug interactions [32]. A similar analysis 
was performed in the Stanford clinical data 
warehouse to show that cilostazol, the only 
medication approved for use in peripheral 
vascular disease but which carries a black 
box warning for cardiovascular mortality, was 
not associated with increased adverse cardiac 
events or overall mortality [33]. Ryan et al. 
performed perhaps the first “medication-wide 
association study” to analyze the association 
between a broad range of medications both 
individually and by drug class on four clinical 
outcomes; they replicated a number of known 
drug-adverse event pairs and suggested new 
associations, though challenges remain in 
interpretation of comorbid disease indications 
and non-random polypharmacy, both of which 
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can confound results [34]. A study in 2011 
used a free-text query-facilitated review of 
EHR data to determine whether to give or 
not anticoagulants to a pediatric patient with 
lupus in the absence of published evidence 
[35]. Collectively, these studies point to a 
future use of the EHR as a source of “big 
data” to guide care, potentially as a real-time 
consult for patient care. 

Similarly, phenome-wide analyses of EHR 
data are not limited to genetic correlations. Liao 
et al. used PheWAS to analyze associations be-
tween disease phenotypes and autoantibodies 
[36]. Neuraz et al. extended PheWAS to map 
ICD-10 codes to correlate thiopurine methyl-
transferase (TPMT) activity with phenotypes, 
noting that those with increased TPMT activity 
were more likely to have outcomes associ-
ated with inadequate treatment with TPMT 
inhibitors [37]. Boland et al. used a PheWAS 
method to evaluate periodontal disease, noting 
associations with diabetes, hypertension, and 
hypercholesterolemia [38]. Doshi-Velez et 
al. found autism spectrum disorder patients 
could be grouped by their clusters of comorbid 
disease [39] Analysis of such clinical data may 
inform segregation of diseases into subtypes, 
informative for biologic analysis. In an anal-
ysis of more than 110 million patients from 
the US and Denmark, Blair et al. used billing 
code data to show that complex diseases often 
co-occurred with Mendelian diseases, repli-
cating known Mendelian-complex diseases 
associations (e.g., ataxia telangiectasia and 
breast cancer) and suggesting many new ones, 
such as Fragile X with several autoimmune 
diseases [40]. In support of this finding, they 
found Mendelian genes were overrepresented 
among genes associated with common diseases 
through GWAS. 

The growth of secondary use of EHRs 
for clinical, genomic, and pharmacogenom-
ic research (as well as a future promise of 
use for other omic technologies) calls into 
question the nature of the EHR itself. As 
Hripcsak and Albers argue [41], while the 
EHR provides an unprecedented resource 
of longitudinal, detailed clinical data, it 
may be incomplete [42], fragmented [43], 
and erroneous [10, 25] at times. Thus, new 
methods of studying the EHR as an “object 
of interest in itself ” [41] are needed as we 
consider the EHR as an active participant in 
the process of phenotyping. 

Adoption of Genomics and 
Pharmacogenomics in 
Clinical Practice
The promise of omic technologies has always 
been in their application to clinical care. 
Francis Collins, the current Director of the 
National Institutes of Health, recognized 
that implementation of genomic medicine 
required preemptive genotyping and the use 
of EHRs to automate the process, saying, in 
2009, that “if everybody’s DNA sequence is 
already in their medical record and it is sim-
ply a click of the mouse to found out all the 
information you need, then there is going to 
be a much lower barrier to beginning to incor-
porate that information into drug prescribing.” 
[44] Implementation of this vision requires 
detailed genomic (or other large-scale bio-
logic data) be available, interpretable, and 
made clearly actionable to a broad range of 
clinicians. A number of institutions have since 
been exploring pragmatic implementations of 
genomic medicine projects and the necessary 
role the EHR plays in adoption. 

Sarkar identif ied genomic medicine 
clinical implementation efforts as major 
developments in his 2012 IMIA Yearbook 
Survey [45], and significantly more progress 
has been made over the last year. Sarkar noted 
two programs in 2012: the Vanderbilt Pharma-
cogenomic Resource for Enhanced Decisions 
in Care & Treatment (PREDICT) [46] and a 
similar effort targeted for the pediatric cancer 
population at St. Jude Children’s Research 
Hospital [47]. Both of these employ multi-
plexed genotyping assays to evaluate common 
pharmacokinetic and pharmacodynamics 
variants and provide raw and interpreted ge-
netic results within the EHR. Analysis of the 
first ~10,000 patients in PREDICT noted that 
91% of the European ancestry patients and in 
96% of African ancestry patients carried an 
actionable genetic variant for at least one of 
the five implement drug-genome interactions 
[48]. Moreover, preemptive multiplexed 
genetic testing resulted in 46% fewer tests 
performed when compared with a reactive 
strategy that tested when each target medica-
tion was prescribed. The 1200 Patients Project 
at the University of Chicago will recruit 1200 
patients from 12 pre-selected physicians for 
prospective genetic testing [49]. Information 

on genetic variants is provided through a cus-
tom web interface that displays summarized 
phenotype information. The University of 
Florida and Shands Hospital’s Personalized 
Medicine Program is testing patients under-
going cardiac catheterization with a custom 
array of 256 SNPs with the goal of evaluating 
the effect of clinical alerts on clopidogrel pre-
scribing [50]. Other eMERGE sites have also 
engaged in clinical implementation projects, 
including the CLIPMERGE-PGx project at 
Mount Sinai [51], Geisinger Health System, 
Mayo clinic, and others. Common features 
of many of these implementations are the 
inclusion of select variants in the EHR with 
clear actionability (as opposed to a broad set 
of genotype results of unknown significance), 
phenotype interpretation, and oversight by 
institutional Pharmacy and Therapeutics 
committees (see Figure 1). The recent Im-
plementing Genomics in Practice (IGNITE) 
network funded by NHGRI seeks to integrate 
genomic information into EHRs and develop 
genomic clinical decision support at sites 
beyond large academic hospitals [52]. 

An important component of implementa-
tion of pharmacogenetics in practice is clear 
guidance on what to do once an actionable 
variant is noted. An important effort in this 
field has been the Clinical Pharmacogenetics 
Implementation Consortium (CPIC), a shared 
project of PharmGKB (http://pharmgkb.org) 
and the Pharmacogenetics Research Network 
(PGRN) [53]. CPIC guidelines have been 
published for 23 medications to date [54]. 
Indeed, in the case of clopidogrel [55, 56], the 
guideline has been revised to incorporate new 
evidence, reflecting the fast-moving nature of 
pharmacogenomic knowledge. The FDA lists 
over 100 medications with germline variants 
that could affect drug prescribing [57]. 

Using Omic Technologies 
for Drug Discovery and 
Repurposing
The cost of generating new therapeutics has 
risen dramatically over the past 60 years, with 
each new drug costing about 80-fold more in 
2010 than 1960 in inflation-adjusted terms 
[58]. As a result, many are investigating 
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high-throughput and computational ap-
proaches to drug discovery and repurposing. 
Recent efforts have focused on the use of the 
omics data, especially genomics, to discover 
new drug targets and search for new uses for 
existing drugs, referred to as drug reposition-
ing. In two linked papers, Dudley et al. [59] 
and Sirota et al.[60] created disease signatures 
from microarray data in Gene Expression 
Omnibus and compared these to gene ex-
pression data from Connectivity Map [61] 
to identify potentially novel therapeutics for 
lung cancer and inflammatory bowel disease. 
A similar study using this method, noted that 
tricyclic antidepressants may have efficacy 
against small cell lung cancer (but not non-
small cell lung cancer) [62]. 

Disease-gene association data may also 
predict drug targets. Sanseau et al. evaluated 
existing GWAS hits and found that genes 
related to GWAS hits are significantly more 
likely to be targetable by small molecules or 
by biologic agents than other genomic regions, 
and that 15.6% of GWAS genes are existing 
drug targets (compared to 5.7% of the general 
genome) [63]. In support of this hypothesis, 
Okada et al. performed a multi-ethnic GWAS 
of 103,638 cases and controls for rheumatoid 
arthritis (RA) and noted 101 total RA risk loci; 
these loci identified 18 of 27 current RA drug 

target genes, and identified three approved 
cancer medications that may be active against 
RA [64]. Khatri et al. analyzed eight existing 
organ transplant rejection datasets and found 
a common module of 11 genes overexpressed 
in all rejected organs [65]. Using these genes, 
they identified two existing non-immuno-
suppressant drugs that could be repurposed 
to regulate these genes, and demonstrated 
enhanced effect in a mouse model. Sateriale 
et al. analyzed protozoan genomes to predict 
antimicrobial activity, then validated pre-
dicted activity against one protozoan with 
prior results from a cell-based assay [66]. 
Resources such as the drug-gene interaction 
database (http://DGIdb.org), which integrates 
data from 13 databases [67], and PharmGKB 
(http://pharmgkb.org) may facilitate trans-
lation of genomic study results to potential 
therapeutics. See the Table for a listing of TBI 
resources discussed in this paper.

Trends in Personal Genomic 
Testing to Guide Health Care
Direct-To-Consumer (DTC) genetic testing 
through sites such as 23andMe (Mountain 
View, CA) has provided an avenue for patients 

to pursue genetic testing outside of a doctor’s 
order. Individuals received test results and 
personalized information on their genetic 
ancestry, disease risk, and drug response for 
selected medications. Tenenbaum et al. de-
scribed a model for how DTC genetic testing 
could be used to guide care with clinical input 
[68]. They reported the case of a woman with 
unremarkable personal and family history 
who learned through DTC testing about the 
presence of a prothrombin gene mutation, and 
as a result, underwent anticoagulation during 
pregnancy. Each DTC website maintained its 
own predictions of disease risk by curating 
genetic risk variants and effect sizes from 
literature evidence. As a result, risk predic-
tions can vary, incorporating different SNPs 
and resulting in varying classification perfor-
mance using simulated population data [69]. 
In addition to personal information, 23andMe 
has also been an important force in genomic 
discovery. Using electronic surveys completed 
by 23andMe enrollees, they replicated over 180 
known GWAS associations, including 75% 
of those for which they adequately powered 
[70], and have discovered new associations for 
other diseases and traits, such as environmental 
allergies [71] and hypothyroidism [72]. 

Recent events have made clinical guidance 
from DTC genetic testing harder to obtain for 
new customers. Navigenics and deCODEme, 
two other sites that previously provided DTC 
genetic testing, have withdrawn from the 
personal genome-testing market after being 
purchased by Life Technologies Corp. (Grand 
Island, NY) and Amgen Inc. (Thousand Oaks, 
CA), respectively. Furthermore, on November 
22, 2013, the Food and Drug Administration 
ordered 23andMe to stop providing clini-
cal guidance for genetic test results, citing 
“potential health consequences that could 
result from false positive or false negative 
assessments.” [73] As a result, 23andMe is 
no longer providing disease risk and drug 
response information to new enrollees, though 
such information remains available to prior 
enrollees at the time of this writing. 

Another major development in 2013 
regarding genetic testing came in the form 
of the Supreme Court case Association for 
Molecular Pathology v. Myriad Genetics, 
which ruled that genes or specific natural-
ly-occurring variants cannot be patented, 
opening the possibility for other labs to test 

Fig. 1   Model for Clinical Implementation of Pharmacogenomics. This model is built off implementations used by PREDICT(46), CLIPMERGE(51), 
and University of Florida(50).
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for BRCA1 and BRCA2 variants, specifically, 
and more broadly ensuring the ability to test 
for actionable variants for other genes. 

Dense biologic data may have an emerging 
role in individual healthcare. In a landmark 
study, Chen et al. performed genomic, tran-
scriptomic, proteomic, metabolomic, and 
autoantibody profiles from a single individual 
over a 14 month period [74]. Genomic testing 
indicating increased risk of type 2 diabetes, 
and regular metabolic profiling noted transient 
elevation hemoglobin A1c levels to a diabe-
tes-defining 6.7% following a respiratory syn-
cytial virus infection. Sequencing technologies 
may see their first large-scale role in defining 
somatic mutations in cancers. Candidate SNP 
genotyping programs for melanoma can influ-
ence care choices and enrollment into clinical 
trials [75]. Next generation sequencing has 
revealed new mutations in known causative 
genes, potentially expanding both testing and 
treatment indications [76], and have revealed 
successful treatments for existing cancers not 
previously envisioned [77, 78]. Large-scale 

analysis of multiple omic data platforms from 
The Cancer Genome Atlas suggests a future 
classification of cancer, not by tissue, but by 
mutational analysis [79, 80]. 

Sequencing data may also have a role in 
tracking infections. Snitkin et al. used whole 
genome sequencing to track an outbreak 
of a resistant Klebsiella infection at the 
NIH clinical center to a single patient [81]. 
Sequencing also helped identify that the 
reemergence of cholera in Haiti in 2010 as 
from a foreign source [82], and characterize 
that there were two distinct populations at the 
outset of the disease [83]. 

Looking Forward 
EHRs and EHR-linked biobanks are rapidly 
becoming a very valuable source of big data 
for discovery. To reach their true potential, 
systems to link them together and rapidly 
execute common phenotypes across very large 

populations are needed. Significant clinical 
informatics challenges remain to execute this 
vision. The challenge for the next decade of ge-
nomics is translation of large-scale biological 
data-driven discovery into clinical impact. To 
do so, EHRs will need to easily manipulate big 
data, and not just be a generator of it. The first 
large-scale biologic data imported will likely 
be genomic. The data will likely be segregated 
into actionable and non-actionable variants, as 
suggested by ongoing clinical genomic imple-
mentation efforts mentioned above. Although 
“non-actionable” content does not need to be 
immediately available to clinicians, it needs to 
be stored, since the data may become relevant 
with future discoveries [84]. A new breed of 
clinical decision support systems (CDS) is 
needed to easily guide providers to clinical 
interpretations of dense genomic information, 
which often have non-intuitive nomenclatures. 
CDS systems must also be able to be changed 
quickly with evolving evidence [55, 56]. Clin-
ical adoption will be facilitated by consensus 
national guidelines (such as CPIC) that start 
from assumption that dense genetic data are 
already embedded in the EHR. The growth of 
secondary use of EHR data within sites and 
aggregated across networks of institutions 
will also play a key role in discovery, as future 
incorporation of dense genetic data into EHRs 
will enable to add new classes of clinical dis-
covery. Given genetic differences in ancestral 
populations, accrual of diverse populations will 
be critical to develop evidence to guide and 
refine care over time, with the ultimate goal of 
an omic-enabled, learning healthcare system.
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Table1   Select public resources available for Translational Bioinformatics. 

Name

Pharmacogenomic 
Biomarkers in Drug 
Labels

PharmGKB

Clinical Pharmacoge-
netics Implementation 
Consortium (CPIC)

Phenotype 
Knowledgebase

NHGRI Catalog 
of GWAS studies

Catalog of PheWAS results

Drug-Gene Interaction 
database

My Cancer Genome

ClinVar

SHARPn

URL

http://www.fda.gov/drugs/
scienceresearch/ researchareas/
pharmacogenetics/ucm083378.htm

http://www.pharmgkb.org

http://www.pharmgkb.org/page/cpic 

http://phekb.org 

http://www.genome.gov/26525384 

http://phewascatalog.org 

http://dgidb.genome.wustl.edu

http://www.mycancergenome.org 

http://www.ncbi.nlm.nih.gov/clinvar/ 

http://phenotypeportal.org

Comments

Lists FDA-approved drugs with pharmacogenomic informa-
tion in their drug labels.

PharmGKB is a curated resource about the impact of genetic 
variation on drug response for clinicians and researchers.

Provides a list of the published guidelines for drug-gene 
interactions produced by CPIC.

Online collaborative repository for building, validating, 
and sharing electronic phenotype algorithms and their 
performance characteristics.

Curated list of GWAS studies, their phenotypes, and key results.

Searchable, downloadable catalog of EHR PheWAS results.

Provides a search interface into drug-gene interactions from 
data derived from 13 resources.

Provides up-to-date data regarding cancer mutations, 
treatments, and relevant clinical trials.

It provides up-do-date relationships among human varia-
tions and phenotypes along with supporting evidence.

Collection of computable phenotype algorithms generated 
by SHARPn.
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are solely the responsibility of the author and 
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