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Summary
Objectives: The goal of this survey is to discuss the impact of the 
growing availability of electronic health record (EHR) data on the 
evolving field of Clinical Research Informatics (CRI), which is the 
union of biomedical research and informatics. 
Results: Major challenges for the use of EHR-derived data for 
research include the lack of standard methods for ensuring that 
data quality, completeness, and provenance are sufficient to 
assess the appropriateness of its use for research. Areas that need 
continued emphasis include methods for integrating data from 
heterogeneous sources, guidelines (including explicit phenotype 
definitions) for using these data in both pragmatic clinical trials 
and observational investigations, strong data governance to 
better understand and control quality of enterprise data, and 
promotion of national standards for representing and using 
clinical data. 
Conclusions: The use of EHR data has become a priority in CRI. 
Awareness of underlying clinical data collection processes will 
be essential in order to leverage these data for clinical research 
and patient care, and will require multi-disciplinary teams repre-
senting clinical research, informatics, and healthcare operations. 
Considerations for the use of EHR data provide a starting point 
for practical applications and a CRI research agenda, which will 
be facilitated by CRI’s key role in the infrastructure of a learning 
healthcare system.
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Introduction
The use of data derived from electronic 
health records (EHRs) for research and 
discovery is a growing area of investiga-
tion in clinical research informatics (CRI), 
defined as the intersection of research 
and biomedical informatics [1]. CRI has 
matured in recent years to be a prominent 
and active informatics sub-discipline [1, 2]. 
CRI develops tools and methods to support 
researchers in study design, recruitment, and 
data collection, acquisition (including from 
EHR sources), and analysis [1]. To com-
plement the “Big Data” theme of the IMIA 
2014 Yearbook, this summary explores the 
impact of increasing volumes of EHR data 
on the field of CRI. 

There is tremendous potential for le-
veraging electronic clinical data to solve 
complex problems in medicine [3]. The 
impact on the CRI domain is exemplified by 
a growing number of publications related to 
the use of EHRs, including medical record 
systems, algorithms and methods [4]. The 
analysis of existing clinical, environmental, 
and genomic data for predicting diseases 
and health outcomes is growing [5-7]. The 
regulatory and ethical challenges for using 
EHR data for research – though complex 
– are being addressed [8, 9]. Research use 
of EHR data is inherent to the vision of the 
learning healthcare system [10]. In this 
context, CRI will play a central role bridg-
ing different perspectives from research 
and healthcare operations, particularly as 
they relate to new demonstrations of inter-
ventional clinical trials embedded within 
healthcare systems [11]. The more immedi-
ate uses of EHR data are for observational 
research (i.e., investigations that observe 

and explore patient phenomena related 
to the “natural” – rather than researcher 
controlled – assignment of interventions), 
because these designs have less inherent 
risk and disruption to clinical workflows 
than do interventional trials. 

Definitions 
Clinical research is the science that supports 
the evaluation of safety and effectiveness 
of therapeutics (medications and devices), 
diagnostic tools, and treatment regimens. 
Clinical research includes a variety of study 
designs and methods to support patient-ori-
ented research (i.e., conducted with human 
subjects or their biospecimens), clinical 
trials, outcomes research, epidemiologic 
and behavioral studies, and health services 
research [12]. Clinical research informat-
ics, then, is the branch of informatics that 
supports all these research activities, par-
ticularly the collection, management, and 
analysis of data for varied types of studies. 
Research approaches can be characterized 
broadly as either interventional (or experi-
mental trials, where the researcher assigns 
treatments) or observational (where treat-
ments are not assigned by the researcher). 
To date, CRI has focused largely on the 
support of interventional trials, but there is 
momentum around observational research 
and clinical data mining [6], both of which 
are particularly relevant to this IMIA Year-
book theme of “Big Data”. We defer to 
other issue authors for precise definitions 
of the term “Big Data,” but premise this 
discussion on the assumption that the large 
amounts of clinical and administrative data 
from institutional repositories and EHR sys-
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tems qualify as Big Data. This summary and 
discussion, therefore, focus on informatics 
activities and trends related to the use of data 
collected from clinical practice for purposes 
of research and discovery. 

Interventional Research
In interventional studies, researchers 
control the assignment of the interven-
tion or treatment under investigation. In 
randomized controlled trials (RCTs) – the 
gold standard for evidence generation – 
researchers assign the participant to an 
intervention using randomization. The 
widespread availability of EHR systems 
in clinical practice are enhancing the po-
tential for pragmatic clinical trials (PCTs), 
randomized controlled trials designed for 
broad generalizability, typically using 
multiple clinical sites and broader eligi-
bility criteria. In contrast to explanatory 
trials, for which the goal is to detect the 
effects of new treatments, PCTs evaluate 
interventions in “real-world” practice con-
ditions [13]. The routine implementation 
of PCTs is an important component of a 
learning health system [10, 14]. Pragmatic 
trials require EHR data to identify research 
cohorts based on patient features and “clin-
ical profiles”, including co-morbidities, 
severity, and health outcomes [14]. Current 
informatics challenges for PCTs include 
developing ethical and regulatory standards 
and public trust [8, 9], integrating data from 
multiple databases, identifying appropriate 
study populations, unambiguously iden-
tifying procedures and treatments, and 
consistently and explicitly characterizing 
diseases in terms of progression, severity, 
and patient impact [14]. 

Observational Research 
Observational research is non-experimental 
research encompassing different research 
designs (e.g., cross sectional, cohort, and 
case control) and directional components 
(prospective, retrospective, or non-lon-
gitudinal) [15]. The distinguishing factor 
is that there is no researcher-controlled 
assignment of treatment or intervention. In 

observational studies, the treatment occurs 
“naturally:” that is, as a result of patient fac-
tors and decisions made as part of routine 
healthcare delivery. In quasi-experimental 
design, the criteria used for treatment 
might be unknown, or determined using 
non-random methods (e.g., a summary 
score) outside the control of the research-
er. A control group component in some 
observational study designs facilitates the 
evaluation treatment-outcome associations, 
making observational studies an appealing 
complement to RCTs [16-18]. Observation-
al research principles underlie the growing 
use of patient registries for research [19-21] 
and management of chronic disease [22], 
quality measurement and improvement 
[23-37] activities, and comparative effec-
tiveness research (CER) [28-30]. CER is the 
examination of available therapies relative 
to a broad range of health outcomes – or 
“what works best” in healthcare [16]. Be-
cause the goal of CER is to evaluate and 
compare real world treatments in large and 
diverse populations, the use of EHR data 
and observational research methods are 
essential [31-33]. 

Data mining is the exploratory and com-
putationally-guided process of discovering 
patterns and signals in large data sets, which 
can then be used for hypothesis generation, 
predictive modeling, and other analytic ac-
tivities. Data mining methods are counter to 
traditional hypothesis-based research, and 
instead developed in response to Big Data 
challenges in the business sector. None-
theless, data mining has been embraced by 
some biostatisticians, and is gaining respect 
in the research community [6]. Data mining 
supports very large data sets obtained from 
legacy databases or data warehouses [34], 
and deals with the secondary analysis of 
clinical data, meaning the data are collected 
as a byproduct of routine clinical care and 
not purposely collected for research [6]. 

Research Fundamentals 
The general process of research investi-
gation includes formulating a research 
question, identifying relevant concepts 
and measures (variables), and collecting, 
analyzing, and interpreting data. A variety 

of statistical techniques can be used to 
demonstrate associations between patient 
features (e.g., laboratory value, genetic 
marker), experience (e.g., treatment), or 
events (e.g., onset of disease, hospital-
ization, death); these associations can 
sometimes be due to chance, bias, or con-
founding [35]. Bias is any systematic error 
that affects the estimates of the association 
under study, and can emerge from the iden-
tification of subjects (i.e., selection bias) 
or their evaluation (i.e., observation bias). 
Confounding results from the contamina-
tion or oversaturation of measured effects, 
influenced from related factors external to 
the study [35]. The strength behind RCTs 
is the belief that randomization eliminates 
confounding by ‘randomly distributing’ 
these factors – both known and unknown 
– across comparison groups. Both bias 
and confounding are major issues for 
observational studies [36, 37] and CER in 
particular [16, 37]. 

General research considerations for all 
research studies are the somewhat compet-
ing notions of validity and generalizability. 
Validity refers to confidence in the observed 
associations, and is increased when chance, 
bias, and confounding are well addressed. 
Bias and confounding can be minimized 
with strict eligibility criteria to limit the 
differences between comparison groups, 
but at the cost of making study populations 
‘different’ from (or less generalizable to) the 
greater population.

Methods 
Drawing from the literature of both the in-
formatics and clinical research communities, 
we isolated important themes related to the 
use of electronic clinical data for research, 
including the heterogeneity and quality of 
EHR data, integrating data from multiple 
organizations, identifying research cohorts 
based on explicit clinical profiles, and the 
role of informatics in a learning health 
system. Emergent from these themes, a set 
of considerations for the use of EHR data 
is presented as a tool for coping with these 
challenges in the present and for guiding 
improvements for the future.
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Current Themes Related to 
the Use of Electronic Clinical 
Data for Research 
Important areas of informatics activity and 
recent advances are summarized below.

Heterogeneity of Data from EHRs
The definition and content of EHRs vary 
greatly [38, 39]. However, reimbursement 
requirements and common healthcare de-
livery processes do result in broad areas of 
similar data collection across many health 
care providers. Common subject areas 
shared between most EHRs include patient 
demographics, healthcare encounters, diag-
noses, procedures, laboratory findings, and 
vital signs. While there is commonality in 
subject areas, there is variation in how these 
concepts are operationalized into variables 
and codes [40]. What is notably missing 
from typical EHR data are standardized 
data related to disease severity, including 
disease-specif ic and general measures 
of patient functioning that are necessary 
for health outcomes research [41]. Esta-
brooks et al convened consensus groups 
of experts, patients, and stakeholders and 
identified critical patient-reported elements 
that should be systematically incorporated 
into EHRs for standard and continuous 
assessment, which include health behaviors 
(e.g., exercise), psychosocial issues (e.g., 
distress), and patient factors (e.g., demo-
graphics) [42]. 

In addition, there are multiple sources for 
some concepts that need to be well defined 
for meaningful analyses – within or across 
organizations. For example, medication 
usage can be identified using electronic 
orders, pharmacy fulfillment, administration 
records, or medication reconciliation. EHR 
data are inherently subject to the institution’s 
workflows and data-generating activities 
[43-45]. For research to be reproducible 
and for results to be valid, the source and 
limitations of different types of data within 
an organization must be clearly defined. Data 
provenance is the understanding of definitive 
or authoritative sources for particular data 
and any transformation of the data from their 
original state. This understanding is critical 

both for the valid use of these data in the 
present, and to drive future improvement 
in the quality of data from clinical systems 
[46]. Curcin et al have constructed a set of 
recommendations for modeling data prove-
nance that includes the formal representation 
of relevant domain knowledge and business 
processes [47]. Hersh et al (2013) provide 
an illustrative model of data provenance, 
as part of their comprehensive description 
of caveats for the use of operational EHR 
data in research contexts [46]. Other caveats 
identified include the prevalence of missing 
and inaccurate data, the fragmentation of 
patient data across providers, operational 
features that introduce bias, inconsistencies 
in free text clinical notes, and differences 
in data granularity [46]. These aspects of 
EHR data are not generally reported, but 
likely have important implications for most 
research designs. 

Data Quality
The notion of data quality is complex and 
context dependent [48, 49].  Weiskopf pres-
ents a multi-dimensional (completeness, 
correctness, concordance, plausibility, and 
currency) model of data quality, as well as 
common data quality assessment methods 
that include comparison with gold standards, 
data source agreement, distribution com-
parison, and validity checks [50]. Accuracy 
and completeness [51] are the dimensions 
of quality that are most commonly assessed 
in both observational and interventional 
trials [23, 52]. These dimensions closely 
indicate the capability of the data to support 
research conclusions, and have been priori-
tized in the high-profile Healthcare Systems 
Collaboratory, an NIH-funded exploratory 
collaboration to advance PCTs, cooperative 
research partnerships, and evidence-based 
healthcare) [52]. 

Challenges for Studies Involving 
Multiple Healthcare Organizations
Multi-site PCTs, safety surveillance, and 
observational research projects that iden-
tify patients from heterogeneous practice 
settings pose challenges for reconciling the 

variation in healthcare operations, widely 
disparate information systems, and differ-
ences in data capture fidelity. The impact 
of the selection of healthcare system and 
database on results of previously conducted 
studies is illustrated by a sobering study 
recently published in the American Journal 
of Epidemiology [53]. Using administrative 
claims data, Madigan et al systematically 
explored differences of relative risk and 
standard error estimates across a network 
of 10 health system data bases (130 million 
patients combined) for 53 drug-outcome 
test cases. They demonstrated variant 
results on studies in different clinical 
networks, despite identical sampling and 
statistical methods, in some cases reversing 
the drug-outcome associations detected. 
Authors concluded that 20% to 40% of ob-
servational database studies can swing from 
statistically significant in one direction to 
statistically significant in the opposite direc-
tion, depending on the choice of database 
[53]. The specific causes for this variance is 
unknown, but a growing number of methods 
reports are addressing approaches for using 
EHR data in observational research, includ-
ing methods related to patient sampling and 
data quality [32, 54, 55]. 

Research studies are mandated to report 
patient characteristics for each study site as 
part of Consolidated Standards Of Reporting 
Trials (CONSORT) [56] and STrengthening 
the Reporting of OBservational studies in 
Epidemiology (STROBE) [57] guidelines. 
Data from different healthcare organizations 
represent different patient populations, treat-
ment patterns, and operational factors related 
to the collection, coding, and reporting of 
clinical and administrative data. Brown et 
al provided a set of recommendations for 
data quality checks and trend monitoring 
in distributed data networks for CER, using 
experiences from their multi-site networks 
[58]. Moving forward, features related to the 
EHR system will be a critical factor, and at 
times an unknown confounder, in research 
conducted with healthcare systems and 
electronic clinical data. There is growing 
appreciation that EHR structure and features 
might someday be reported as important 
qualifying data [59] and that it is important 
to have processes in place to monitor and 
characterize potential issues. 
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EHR Phenotypes
The heterogeneity of EHR data creates 
challenges for identifying the presence 
of any specific clinical condition – such 
as diabetes, heart disease, or obesity – in 
patient populations, and greatly limits op-
portunities to observe or learn from regional 
variation of disease patterns or trends over 
time [60]. For example, a recent report on 
trends in diabetes lists several conditions 
(including hypoglycemia, neuropathy, 
chronic kidney disease, peripheral vascular 
disease, cognitive decline) whose national 
prevalence could not be calculated due to 
lack of consistency of EHR documentation 
and definitions across the United States 
[61]. The methods for defining a clinical 
condition and applying it to EHR data are 
encompassed by the concept of EHR-driven 
computational phenotyping. Currently there 
are no standardized or well-established 
EHR-based definitions (or “phenotypes”) 
for most conditions, although many dif-
ferent operational definitions are used in 
different contexts. Within the past few 
years, a growing number of publications 
have emerged to describe methods related 
to EHR-driven phenotype definitions and 
resources for accessing and evaluating val-
idated definitions [60, 62-65] An important 
original work by Shivade et al reviews the 
development of phenotyping approaches 
using EHR data for identifying cohorts 
of patients [66]. Their assessment creates 
a useful framework of classification, but 
is focused specifically on cohort identi-
fication. In addition, there is a scarcity 
of information about performance (e.g., 
specificity, sensitivity, positive and neg-
ative predictive values) of these various 
conditions definitions used with EHR data. 
The estimation of validity, using any perfor-
mance measure, requires a “gold standard,” 
defined as the best classification available 
for assessing the true or actual disease 
status. This requirement poses feasibility 
challenges because a “gold standard” does 
not often exist and must be constructed in 
order to be used for evaluation. Many EHR-
based definition developers have conducted 
validation studies [65, 67, 68] but there is 
no standard approach or uniformly opera-
tionalized clinical “gold standard”. Further, 

the performance indications of phenotype 
definitions are not typically included in the 
reports of many research studies published 
in scientif ic journals. Although greatly 
needed, a standard process for validation 
of these definitions (including statistical 
considerations and procedures and qualifi-
cations for expert reviewers) does not yet 
exist. Standardized methods in this area 
could support measuring the impact of 
the different versions of the International 
Classification of Disease coding systems, 
a transition that will have broad impact 
across healthcare operations in the U.S. As 
discussed by Boyd et al, the sometimes-con-
voluted semantic relationships between 
mapping the same disease conditions from 
ICD-9-CM and ICD-10-CM will create 
complex logistics, with predicted repercus-
sions to accuracy [69]. 

Although used predominantly to identify 
positive “cases” (or negative cases or con-
trols) for research, an important application 
of phenotypes is in the definition of health 
outcomes. Here, the methods already devel-
oped with administrative and claims data 
should be a foundation for application to 
EHR data, in particular the well-constructed 
and mature work of the U.S. Food and Drug 
Administration’s Mini-Sentinel program 
[70]. Also utilizing claims data, Fox et al 
have described methods for expert review 
and consensus to define health outcome 
measurements in claims data [71]. 

The eMERGE consortium [65] and phe-
notype knowledge base [72] has lead the 
vanguard effort in many areas, including 
representation of phenotype definitions in 
characterizing eligibility criteria for clini-
cal trials [64], metadata mapping [73], and 
a targeted evaluation of the National Quali-
ty Forum quality measure model [74]. This 
work is framed within its core objective 
of genetic research; in another context, 
Richesson et al have described a broader 
set of use cases for clinical research [14]. 
The SHARPn project [75, 76]  describes 
development of a data normalization infra-
structure for phenotyping activity [77] and 
its new library [78] represents an important 
repository for implementation efforts, par-
ticularly for Meaningful Use application. 
Institutional infrastructure solutions [79], 
machine learning platforms [62], and user 

interfaces [79,80] are also a significant 
area of development.

Phenotype definitions based upon EHR 
data are inexorably tied to their health 
services context. Disparate processes 
are reflected within these data, including 
measurement of patient biological status, 
diagnostic progression, treatment decisions, 
and management of disease. As discussed by 
Hripcsak, the true patient state is interpreted 
through the health care model processes, 
which in turn informs and creates the basis 
for the phenotype itself [81]. The logic and 
parameters of each phenotype definition may 
lead to significantly different yields [82]. 

Due to the relatively recent development 
of phenotyping methods, most applications 
have been at single institution or with a 
relatively small group of collaborators. In 
order to achieve uniform implementation 
and reproducibility of results, especially 
among heterogeneous data sources for 
multi-site research and national networks, 
more expansion is needed for logical and 
consistent representation and dissemination 
across sites [83]. The development of robust 
and standardized validation methods is an 
important area for future development, and 
will ensure that individual phenotype defi-
nitions are widely generalizable. Further 
development of phenotyping methods and 
applicability within a variety of settings 
will become increasingly important for a 
broad set of applications in observational 
and interventional research settings.

Observational Data and Learning 
Health Systems
The vision of a Learning Healthcare System 
(LHS) has been described in both the EU 
and the US. The paradigm depends upon op-
erationalizing proven insights from research 
into the health care delivery system [84]. In 
this environment, quality improvement and 
research studies increasingly use the same 
data sources, cohorts, and personnels. The 
core concept is a circular flow of data and 
knowledge between patients, clinicians, 
health provider organizations, and commu-
nities so that data related to the healthcare 
experience inform research, and research 
builds evidence, which in turn informs 
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healthcare practices. Achieving this vision 
will require new ethical frameworks [8, 9], 
robust methods for managing and analyz-
ing observational data, and effective part-
nerships among healthcare systems [85]. 
Future work around the themes presented 
here will be essential to the vision of LHS, 
and CRI will play a key role. The growing 
appreciation for the generalizability and 
convenience of observation studies has 
increased their prominence on the evidence 
hierarchy, and observational research is 
gaining respect as critical part of the LHS 
infrastructure. 

 Both interventional and observational 
research methods are important components 
of the core vision of the learning healthcare 
system (IOM), as shown in Figure 1, inspired 
by interpretations of the learning healthcare 
system as a continuous communication of 
data, information and knowledge between 
healthcare systems, researchers, and public. 

There have been fruitful collaborations 
for integrating clinical data across large or-
ganizations, including models for networked 
research [86] and national pharmacovigi-

lance [87]. We look forward to continued 
demonstration and dissemination of knowl-
edge from the above, in particular their com-
mon challenge to convincingly demonstrate 
that they can overcome issues related to 
data quality, validity, and reproducibility, to 
which observational research and secondary 
use of clinical data are inherently vulnerable. 

The ability to overcome these issues 
will be critical to combining data, applying 
guidelines, or comparing results across 
different settings. Essentially, generalized 
evidence synthesis (e.g., comparative effec-
tiveness research or meta-analyses) of any 
kind will be dependent upon shared seman-
tics and data quality [46, 88-91]. This will 
require increased collaboration between the 
researcher and health system enterprises 
and commitment to quantify data quality, 
lineage, and provenance as part of an on-
going health informatics strategy. Informed 
by the experience of research and clinical 
networks that have successfully leveraged 
electronic clinical data for research insight 
and pharmacovigilance, we articulate the 
guidelines in the next section. 

Considerations for Using 
EHR Data in Research 
Caveats and Guidelines
Regardless of the study design, there are 
some important issues that must be consid-
ered for research investigations involving 
EHR data. The following principles address 
risks to research integrity and points of atten-
tion for using EHR data, and also to describe 
outstanding challenges for clinical research 
informatics and informaticians in general. 
•	 Data on a given cohort’s outcomes will 

be limited. Only a fraction of a patient’s 
lifetime care will be housed within any 
EHR [39], particularly in the U.S. Incon-
sistencies in defining a study population 
can affect the validity and generalizability 
of results. For example, readmissions can 
only be identified within those care sites 
where EHR data are available and patients 
can be linked across different locations 
and care delivery settings. Many research 
studies examine all-cause mortality as an 
endpoint; for deaths not directly observed 
within the inpatient setting, this is a very 
incomplete data point in most EHRs 
without supplementation by either the 
social security death index data, which 
has certain limitations, or the National 
Death Index (NDI), which can be costly 
to acquire [92]. 

•	 EHR adoption is continually evolving in 
healthcare environments. Observational 
studies require longitudinal data, but 
use of an EHR does not imply its data is 
consistent over time. A recent Black Book 
Ratings report has noted that 17% percent 
of surveyed health organizations planned 
to switch their current EHR to a new ven-
dor by the end of 2013 in order to comply 
with growing government meaningful use 
requirements [93]. For researchers, this 
means that collected data may span multi-
ple systems (i.e. different EHRs) and thus 
require separate data dictionaries as well 
as design and documentation of a strategy 
for spanning one or more timelines. Major 
upgrades to existing EHRs can also change 
the production data tables as well.

•	 Data quality will be an ongoing issue. 
Depending on the subject domain, some 
portion of data for a given field may be 

Fig. 1   Central role of CRI in a learning healthcare system. Adapted from: http://ehealth.johnwsharp.com/2012/12/14/the-learning-healthca-
re-system-and-order-sets/ 
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nonsensical and should be omitted. For 
example, it is possible that ‘dummy’ or 
‘test’ patients may be left within a pro-
duction EHR which could be discovered 
by scrutinizing patient keys that seem to 
have an unusual volume of encounters. At 
times, this may impact between 10%-15% 
of the EHR data examined. The decision 
to omit or restrict data will depend upon 
the project needs.

•	 Trustworthy data dictionaries are essen-
tial. A project-specific data dictionary 
should be created and include the follow-
ing for each data element: completeness 
in the EHR, range of possible values, 
data types (e.g. integer, character), and 
definitions.

•	 The use of EHR data must be accom-
panied by an understanding of health 
care workflow. EHRs have plentiful time-
stamps that could be used to understand 
the process of care, but care must be taken 
to understand exactly what triggers the 
recording of those dates and times. For 
example, a timestamp recorded for when 
a clinic visit starts can potentially precede 
a patient’s appointment if the provider 
opens the encounter early to get a head 
start on documentation. 

•	 EHR data will reflect billing needs and 
not just clinical care. There may be con-
cepts that have significance for billing but 
not care provision or disease progression. 
Researchers should be cautioned that 
diagnosis and procedure codes that were 
designed with billing and reimbursement 
uses in mind may not reflect a clinical 
state to the resolution needed for research 
purposes.

•	 Observational research using EHR data 
must be a team activity. Success requires 
partnerships between clinical staff, infor-
maticians, and researchers. Given data 
complexity, a new discipline of health 
data science is emerging [94]. As of this 
writing, the National Institutes of Health 
announced the appointment of the Asso-
ciate Director for Data Science, a new 
senior scientific position, charged to lead 
a series of NIH-wide strategic initiatives 
that collectively aim to capitalize on the 
exponential growth of biomedical research 
data such as from genomics, imaging, and 
electronic health records [95].

•	 Advocate for a research voice in the cre-
ation of organizational data governance. 
Quality EHR data is ultimately dependent 
upon a clear organizational data gover-
nance structure that enforces process, 
definitions, and standards. Researchers 
should have a voice within the governance 
structure to ensure that their needs are met 
and that they can communicate any data 
quality issues identified over the course 
of their investigations. 

CRI includes a growing collection of meth-
ods that offer methodological and technical 
solutions for processing clinical data, but 
guidelines for the valid assessment and 
analyses of these data are needed. Current 
clinical research data management practic-
es are tailored to the rigor and regulatory 
requirements of clinical trials [96]. The 
secondary use of data generated from clinical 
care activities has created new challenges 
for data management and analysis, and the 
amount of data available greatly exceeds 
the number of analysts capable of making 
sense of it [97]. Interpretation and applica-
tion of study findings will require teams of 
dedicated informatics professionals working 
collaboratively with researchers and prac-
titioners. These multi-disciplinary teams 
should appreciate the fundamental research 
design principles, as well as organizational 
and workflow factors that affect the com-
pleteness and appropriateness of data for 
different research needs.

The above issues have emerged from the 
lack of representational standards for EHR 
data. Clinical researchers and informaticians 
have developed complex strategies to deal 
with the resulting EHR heterogeneity on a 
per-study basis; however, the identification 
of strategies and solutions will continue 
to be a major activity area for CRI and re-
searchers alike. 

Future Directions and Challenges
EHR technologies are evolving to permit 
not just management of patients at care 
sites, but also telemedicine and the man-
agement of population health. Vendors are 
exploring how to allow integration of the 
data generated by platforms for mobile 

technologies, and wearable devices [98-
100]. These data streams bring new chal-
lenges as patients will use these resources 
to different depths; there is a large potential 
for missing data from patients on the less 
engaged side of the digital divide, especially 
due to lack of technical acumen or barriers 
to access [101, 102]. 

EHRs contain information primarily 
generated during routine clinical care. As 
technology has evolved, there is a great deal 
of data generated outside the traditional 
healthcare system (e.g., wearable devices, 
social networks) with volume expected to 
increase exponentially; these data represent 
an important opportunity to understand the 
complete context of patient health and be-
havior, but will require integrated solutions 
for analytic use. Similarly, increased focus 
on socio-economic status will likely driven 
broader inclusion of different data types, 
including geospatial and patient-reported 
data, areas addressed by recommendations 
of the committee formed by the IOM to 
identify domains and measures that capture 
the social determinants of health to inform 
the development of recommendations for 
meaningful use of EHRs [102]. Images and 
video data represent other areas of largely 
untapped potential where challenges for 
interoperability have precluded large-scale 
analytic application [103]. 

As more data sources are available, there 
are also significant challenges associated 
with person-level disambiguation and link-
age across sources. The U.S. lacks a unique 
person identifier used for healthcare settings, 
a strategy that has been adopted in other 
countries [104]. Multiple techniques exist to 
perform entity resolution and create an inte-
grated view of all data points associated with 
the patient, but accuracy and performance of 
these methods is variable [105]. 

Emerging computational methods have 
arisen to address the demands of molecular 
analyses conducted upon large volumes of 
genetic data, including cloud-based solutions 
and the massively parallel processing sup-
ported by Hadoop, MapReduce, and other 
platforms [105, 106].  As the availability and 
volume of clinical data increases, extending 
these technologies beyond the translational 
sciences offers great potential for overcom-
ing some limitations of traditional relational 
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databases management systems [107]. These 
emerging tools hold potential to support bet-
ter prediction models, with the goal of sup-
porting learning healthcare to achieve better 
outcomes of patient health. The future role of 
informatics will be to build upon successful 
clinical and research networks and collabo-
rations to create a data infrastructure that 
will support a new generation of continuous 
learning [108]. This includes understanding 
the limitations of EHR data, operationalizing 
appropriate research questions for the data, 
and proactively devising approaches improv-
ing data quality for more robust uses. There 
are also opportunities for CRI professionals 
to formulate informatics research questions 
as well as provide leadership in building 
better approaches to data standards and 
exchange to support varied uses. 

Conclusions
There is a great amount of activity sur-
rounding the use of EHRs for observational 
research. Strategies are being designed by 
the CRI community to grapple with the com-
plexities of observational and interventional 
study designs, data governance, technical 
integration issues, and query models. This 
work will continue to grow and inform the 
design and conduct of research as well as 
the eventual application of evidence based 
practice to complete the learning health 
system cycle.

We provide a set of principles, grounded 
in research design, to cope with the problems 
of leveraging EHR data for various research 
and learning objectives, and highlight 
outstanding and important areas for future 
research and attention. EHR data is complex 
and intertwined with business and operation-
al aspects of an organization, which may be 
unfamiliar to researchers and statisticians 
accustomed to data from clinical trials and 
registries. Using EHR data points means that 
one must attempt to understand the workflow 
that created them, particularly if a strong 
program of data governance is not in place. 
Despite this, there is growing appreciation 
for the inherent limitations of these data as 
well as momentum to improve its content 
and quality for research. Successful strate-

gies will address fundamentals of research 
design (including confounding, sampling, 
and measurement bias) while embracing data 
quality limitations. 
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