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Summary
Objectives: Given the quickening speed of discovery of variant 
disease drivers from combined patient genotype and phenotype 
data, the objective is to provide methodology using big data 
technology to support the definition of deep phenotypes in 
medical records.
Methods: As the vast stores of genomic information increase with 
next generation sequencing, the importance of deep phenotyping 
increases. The growth of genomic data and adoption of Electronic 
Health Records (EHR) in medicine provides a unique opportunity 
to integrate phenotype and genotype data into medical records. 
The method by which collections of clinical findings and other 
health related data are leveraged to form meaningful phenotypes 
is an active area of research. Longitudinal data stored in EHRs 
provide a wealth of information that can be used to construct 
phenotypes of patients. We focus on a practical problem around 
data integration for deep phenotype identification within EHR 
data. The use of big data approaches are described that enable 
scalable markup of EHR events that can be used for semantic 
and temporal similarity analysis to support the identification of 
phenotype and genotype relationships.
Conclusions: Stead and colleagues’ 2005 concept of using light 
standards to increase the productivity of software systems by 
riding on the wave of hardware/processing power is described as 
a harbinger for designing future healthcare systems. The big data 
solution, using flexible markup, provides a route to improved 
utilization of processing power for organizing patient records in 
genotype and phenotype research.
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Introduction
Enormous volumes of electronic data are 
collected on patients across the world at 
an ever-increasing rate. Traditional clin-
ical workflows are already overwhelmed 
with the problem of too much data and too 
little time [1]. The idea of finding relevant 
knowledge for the patient at hand from the 
millions of clinical experiences accumu-
lated in Electronic Health Records (EHR) 
is a daunting task--how do we search for 
such knowledge and how do we know the 
associations observed are valid? Starren and 
colleagues argue that including next gener-
ation sequencing within EHRs will further 
overwhelm workflows in clinical practice [2] 
and poses a host of challenges [3]. 

How can informaticists create the next 
generation of information systems that ad-
dress both the present and future challenges 
of data scope and diversity? Stead et al. [4], 
in a seminal paper, describe the problem of 
building large health information systems 
as a tension between investment in soft-
ware-based and hardware/processor-pow-
er-based solutions. While most developers 
and informaticists believe that a solution 
lies in better software capable of handling 
the new complexities of medical care, the 
upshot of the Stead and colleagues article 
is that investment in more complex software 
systems may not be the best approach to 
solving the growing complexity of clinical 
data. They argue that software development 
improves linearly, with about five percent 
gains yearly in efficiency and capabilities to 
address complexities. In contrast, hardware 
processing power has improved exponen-

tially (Moore’s Law), doubling every 18 
months. Simpler software systems that rely 
on hardware processing power to address 
complexity have an inherent advantage.

To shift healthcare to a model that relies 
more on processing power than on software 
complexity, Stead et al. propose the use of an 
internet like approach to health information 
system development using light prescriptive 
standards (e.g., URL, HTTP and HTML) 
that support flexible markup coupled with 
massive indexing of simple data stores. 
Heralding the rise of “big data” architectures, 
they propose combining “light” methods 
with reference standards based on ontologies 
and vocabularies for flexible markup of EHR 
data. The tagging of clinical information at 
different levels of specificity is modeled on 
the standards approaches that enabled the 
rapid expansion of the Internet. Reference 
standards can evolve over time, which is 
important in domains where knowledge is 
rapidly evolving such as genomic data in 
medicine. To date, the approach remains 
theoretical, but the success of big data ar-
chitectures in other industries suggests that 
it is both feasible and advantageous.

Background
Although extant EHR systems could be over-
whelmed by genomic scale data, combining 
data with omics resources and associating 
deep phenotypes with patient records will 
advance knowledge discovery of genetic 
disorders [5] and support the practice of 
personalized medicine [6]. To reach this 
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goal without overwhelming EHRs there are a 
number of challenges that must be overcome: 
phenotyping in the EHR, omics data repre-
sentation and big data analytics in medicine. 
Researchers are actively addressing these 
challenges and accelerating advancement. 

Phenotyping in the EHR
Phenotype is specified through the expressed 
characteristics of an organism that result 
from variation in its genotype interacting 
with an environment [7]. Deep phenotyp-
ing [6] extends phenotyping into clinical 
data with the variation of clinical concepts 
collected over patient-clinician encounters 
used to define phenotypic cohorts of patients. 
From the perspective of clinical records, a 
phenotype is a collection of clinical traits 
and measurements that describe fundamental 
attributes of a patient. The phenotype can 
be a single trait such as race or a collection 
of events that compose a cohort of patients 
that are of interest for a particular question 
being investigated. The use of constellations 
of events to define phenotype provides a 
way of specifying the criteria for a cohort 
of patients. The use of groups of events 
allows the definition of a phenotype to go 
beyond diagnosis coded with International 
Classification of Disease, version 9 codes 
(ICD9) and potentially assesses the accuracy 
of assigned codes [8]. 

 A prerequisite to achieving precision 
medicine is the systematic study of phe-
notype abnormalities through deep phe-
notyping that identifies human deviations 
in morphology, physiology and behavior 
[6]. Through controlled experiments with 
precise phenotype definitions, phenotypes 
have been developed extensively in animal 
models [9]. In clinical settings, on the other 
hand, the data are noisy and collected for 
the purpose of delivering medical treatment 
at the point of care rather than phenotyping. 
Consequently, data stored in EHRs do not 
have the same consistency and precision of 
data collected for experiments.

Hripcsak and Albers discuss the chal-
lenges to phenotyping in the EHR such as 
incompleteness, inaccuracy, complexity and 
bias [8]. They propose studying the complex-

ities of the EHR as a means of improving 
phenotype collection and improving EHR 
processes to support phenotype develop-
ment. They also touch upon expanding the 
way in which phenotypes can be defined in 
terms of time series data analysis. They de-
scribe the process of phenotyping in the EHR 
as an iterative approach in which experts 
curate a set of cohort patients expressing a 
phenotype in order to create a training data 
set. Features are then extracted from the 
EHR, rules are constructed, and sensitivity 
along with specificity are measured until 
they reach an acceptable validated level for 
the training data. The rules are then applied 
to the full data set. The consistency of vo-
cabularies and ontologies used to describe 
EHR data can be explored to determine the 
impact they have on the rules generated and 
complexity of extracting phenotype from 
medical data.

Prescriptive phenotype definition is not 
the only approach to the problem; it is also 
possible to define a phenotype by example 
based on medical events. The field is cur-
rently advancing techniques in ontology 
construction for developing phenotype and 
similarity measures to search and match phe-
notypes [10, 11]. Ontologies and vocabular-
ies are central to phenotype definition within 
EHR data. The Unified Medical Language 
System (UMLS) [12] provides a repository 
of vocabularies with which to consistently 
markup medical records. Expanding poten-
tial applications of the repository, conceptual 
similarity has been used to relate it to other 
knowledge sources [13]. The UMLS con-
tains vocabularies such as the Logical Obser-
vations Identifiers, Names, Codes (LOINC) 
used to encode lab tests [14], RxNorm [15] 
for normalized medication names, ICD9 
[16] for diagnostic codes and Systematized 
Nomenclature of Medicine--Clinical Terms 
(SNOMED CT) with high concept coverage 
and explicit semantic relationships [17], 
which combined, become very relevant for 
the specification of phenotype.

Ontologies
Using a reference standard to harmonize 
phenotype research, the Human Phenotype 
Ontology project created a common termi-

nology and ontological representation that 
can be used for consistently categorizing 
phenotypes in human disease [18]. It con-
nects with the Online Mendelian Inheritance 
in Man (OMIM) resource and extends it 
through the use of a controlled vocabulary 
for consistent labeling [19]. Doelken et 
al. [10] describe the Human Phenotype 
Ontology project and its continuous build 
architecture. They also describe software 
that facilitates consistency management with 
resources such as OMIM.

The use of ontological information en-
ables the patient history or event streams 
to be organized with hierarchical data 
structures that allow flexible annotation 
and searching of the data. An organizational 
mechanism based on directed acyclic graph 
(DAG) representations can be used to encode 
the ontology. The use of DAGs is widespread 
in genomics (e.g., the Gene Ontology and 
Sequence Ontology).

A strategy for managing the dynamic 
domain of genotype and phenotype data is 
to combine highly indexed flexible onto-
logical markup of data files with ontology 
distance measures of events in the patient 
population. Software systems store events 
from patients as clinical encounters with 
clinical content (much of it is free text) 
and metadata on context of collection. By 
marking up observations from each clinical 
encounter using a flexible and extensible 
format, a stream of events can be associated 
with each patient. The primary interest is to 
draw similar cohorts from streams of clinical 
events in the EHR.

Semantic and Temporal Similarity
There are multiple approaches to calcu-
lating similarity measures between patient 
cases such as path length between terms 
in an ontology or similarity of temporal 
sequences that occur in the patient’s re-
cord. A distance measure can be computed 
between terms by searching for the shortest 
path connecting them. Köhler et al. [20] 
examine clinical diagnostics using semantic 
similarity searches on clinical feature that 
describe phenotypes. The tool uses the 
Human Phenotype Ontology to augment the 
searches. They validated the tool with sim-
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ulated data and describe how the approach 
can be applied to assist in diagnostic work-
flow. Girdea et al. [11] present PhenoTips a 
web-based tool for documenting phenotype 
information that is used within clinical en-
counters. The open source software uses the 
Human Phenotype Ontology and connects 
with OMIM. PhenoTips has been deployed 
and used to collect anonymized patient 
phenotype information for three research 
projects in hospitals across Canada. The tool 
is specifically designed to fit within clinical 
workflows and has incorporated feedback 
from clinicians using the system.

Inherent in the concept of similarity are 
representations of patient-history. While 
the genome of a patient may be stable, the 
interpretation of the variants, the effects of 
disease and environment evolve over time. 
The evolution of a patient’s health events 
related to a disease may follow the same 
or a similar trajectory to other patients. 
Leveraging the concept of similar trajec-
tories, an approach to predicting an index 
patient’s health events could use temporal 
alignment of the health records from com-
parator patients [21].

Systems such as Lifelines2, discussed in 
the visualization literature, apply techniques 
to identify and align patients. Specifically, 
these systems use an index case to find 
matching cases, those with exact matches of 
ordered events to the index case. The ordered 
events from the matched cases are aligned 
to the index case and used to predict future 
events for the index case [22]. When multiple 
cases are aligned to an index case, the range 
of outcomes from the matched cases pro-
vides a prediction guide for the index case. 

The approach of finding patients that 
match an index patient assumes that the 
underlying illness and the course of prior 
events are similar [22]. This is a reason-
able assumption, if one assumes that the 
clinical phenotype of a patient is given by 
both underlying medical conditions and 
the aligning medical events. Expanding 
this conceptual definition of phenotype, 
Wongsuphasawat [23] extends Lifelines2 
to include differentiation between and fil-
tering out of unimportant events, inclusion 
of demographic features, and modeling of 
the trajectory those patients took to reach the 
alignment point [24]. This further expands 

the conceptual definition of phenotype. 
Phenotype is not only the disease but also 
its response over time to native homeostatic 
mechanisms and to treatment.

 Even if there is similarity in the underly-
ing conditions (e.g., a myocardial infarction), 
the health events ordered across time (e.g., a 
myocardial infarction, followed by conges-
tive heart failure and low blood pressure) 
may also serve an important role in defining 
phenotype. If a patient has had several prior 
heart attacks or had a heart transplant prior 
to the heart attack, knowledge of the path that 
patients followed prior to the aligning event 
may be critical in developing a phenotype 
that could be used for treatment planning. 
When using EHRs and as the number of 
events considered increases, the probability 
of finding cases with an exact match in the 
sequence becomes reduced. Lee and col-
leagues [25, 26] have explored relaxing the 
requirements for exact match by weighting 
the differences in comparisons of sequence 
events using dynamic programming meth-
ods, however, this approach faces challenges 
with exponential complexity in the number 
of patterns. Adding difficulty, similar events 
in a sequence must be considered as well. 
For example, a patient who has asthma that 
follows treatment with the beta blocker me-
toprolol is similar to one who has asthma that 
follows treatment with a beta blocker pro-
pranolol, but not necessary to one who has 
asthma that follows treatment with aspirin. 

Approaches to address this complexity 
may require application of tools such as 
Ayers et al.’s [27] Sequential Pattern Mining 
Using Bitmaps (SPAM) algorithm [28] or 
artificial intelligence methods for temporal 
abstraction, such as those applied in Sha-
har’s and colleagues Knave II application 
[29]. Nonetheless, deep phenotyping has to 
include the course a patient has followed to 
reach a particular point in time, as this ulti-
mately reflects concepts of disease progres-
sion, complications of illness, and response 
(or non response) to treatment.

Extending analysis approaches with time 
series information from the EHR enables the 
recognition of trending patterns that enhance 
phenotypic description. By constructing 
deep phenotypes from clinical notes and 
other medical findings, a more precise de-
scription of a patient’s health and treatment 

options can be developed and similarities 
between patients can be identified, especially 
in relationship to genomic data and molecu-
lar drivers of the phenotypes. 

Omics Data Representation
In the last two decades medicine has wit-
nessed a revolution in the development 
and use of different molecular biology and 
“-omics” technologies and methodologies. 
Traditionally used as powerful tools towards 
a better understating of the mechanisms 
associated with disease, they are transition-
ing to critical tools for achieving improved 
healthcare by means of precision medicine. 
In the last five years this trend has been rein-
forced by the developments and evolution of 
sequencing methods that have substantially 
reduced the costs of accessing these tech-
nologies, and thus, facilitate their adoption 
for clinical applications [30]. These new 
methodologies have brought with them an 
explosion in the volumes of data generated 
and pose a challenge for their management 
and interpretation.

Almost simultaneously, there has been a 
movement towards the widespread use and 
adoption of EHRs in the clinical setting. 
Consequently, EHR developers have to 
incorporate new forms and data types gen-
erated in the genomics and molecular fields, 
manage them effectively and present the 
assay results in a meaningful way to users. 
The speed in the advances and changes in 
genomics represents additional challenges 
for EHRs in terms of variability and quantity 
of data generated.

 This increasing complexity caused by 
the evolution of genomic technologies is 
exemplified in the changes associated with 
differences in the management of laboratory 
results. Initially laboratories were focused 
on a single gene analysis or gene panels. 
This was followed by the management of 
millions of variants identified in genotyping 
experiments based on genome wide associa-
tion studies (GWAS) and more recently the 
management of whole exome sequencing 
(WES) and whole genome sequencing 
(WGS). In 2003, when the Human Genome 
Project was finished, it meant the successful 
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accomplishment of a multibillion dollar 
international project that required several 
years to complete, now new advanced next 
generation sequencing techniques have 
reduced the costs and data turnaround in a 
manner that have made gathering individual 
genomes for clinical purposes a reality. The 
investment in WES technology combined 
with patient data has resulted in over 100 
Mendelian disease variants being identified 
in the past three years [5]. 

The big volumes of data generated with 
the latest genomic approaches add an import-
ant challenge for biomedical informatics and 
EHRs not just because of their size itself but 
also because of the processing, analysis re-
quirements and methodologies that must be 
applied in order to present the data in a useful 
and meaningful manner for clinical users. 
These processes need to generate key meta-
data to be included with the genomic data 
to aid in their interpretation. The metadata 
should include aspects such as the laboratory 
techniques, bioinformatics, tools, databases 
and pipelines used to generate those data.

Masys et al. [3] described some of the 
challenges associated with the inclusion 
of genomic data in EHRs. They identified 
seven challenges: Separation of raw data 
and interpreted data; Annotation of data 
generation and processing; Requirement 
of lossless compression methods to reduce 
data footprint; Presentation of the clinically 
actionable data; Use of human and machine 
readable formats to facilitate the design 
and implementation of decision support 
methods; Anticipation changes in genomic 
variation; and finally Design of systems 
supporting clinical care and research.

Although the term “omics” covers a 
multitude of different approaches (e.g., 
proteomics, transcriptomics, metabolomics, 
microbiomics), most of the current efforts 
to incorporate these data in the EHRs have 
been focused on the integration of genomics 
information. Even this has been generally 
limited to the inclusion of a single genome 
per individual whereas it is possible to find 
different genomes within an individual 
in different situations such as transplant 
recipients, chimerism or cancer. Therefore 
the possibilities of having to integrate mul-
tiple genomes into the EHRs are real and 
should be considered in the design of future 

systems. Additionally in the last couple of 
decades the landscape of gene expression 
analysis has been dominated by microarray 
technology but the reduction in the cost of 
sequencing technologies is leading towards 
the replacement of microarrays by RNA-Seq 
(RNA sequencing) analysis bringing an addi-
tional source of large volumes of sequencing 
data that should be managed.

The complexity of integrating genomic 
data into EHRs and the clinical workflow be-
come a rationale for intermediate solutions, 
specifically, the development of ancillary 
systems that incrementally evolve increasing 
functionality [2]. Ancillary technologies 
provide a route to gradually incorporate big 
data infrastructure into EHR systems.

To achieve a successful integration of 
genomic data into the EHRs it is necessary 
to adapt and develop available standards to 
ensure efficient data and information ex-
change between the laboratories where the 
data are generated, the EHR and their users 
and in some cases as well with the possible 
ancillary repositories where the genomic 
data are stored [2]. Standards for genomic 
variants such as the genome variation format 
(GVF) [31] can be used to store data along 
with some existing terminologies and ontol-
ogies, such as LOINC, SNOMED-CT, that 
have been adapted for these new data. The 
approach of combining consistent markup 
with efficient genomic storage is a key aspect 
to ensure the successful use of genomic data 
in the EHRs.

Despite the many hurdles, there are nu-
merous examples where genomic data have 
been successfully included in the EHRs for 
both research and clinical purposes such as 
those from the electronic Medical Records 
and Genomics (eMERGE) consortium [32]. 
Newton et al. [33] provide a comprehensive 
description of phenotyping processes in the 
eMERGE network. They touch upon the 
complexity of the task and methodologies 
for achieving it through the use of machine 
learning and data reduction methods.

Another major challenge from a technol-
ogy perspective is integrating the different 
types of omics data with phenotype iden-
tification. Ontologies can be used to both 
integrate data from diverse sources through 
unified semantics and to provide relation-
ships for computational analysis such as 

semantic similarity. Similarity metrics can 
be calculated through ontologies and other 
algorithms to model the degree of content 
similarity to identify phenotypes. This 
explosion of data requires adoption of new 
technology such as big data approaches for 
managing and analyzing it.

Big Data Analytics in Medicine
The term, big data, describes a collection 
of data that pose challenges to traditional 
data processing approaches (e.g., relational 
databases). The challenges are derived from 
the following characterization: volume 
(denoting size), variety (indicating hetero-
geneity), veracity (representing accuracy) 
and velocity (designating processing speed). 
Combinations of these four characteristics 
can result in a big data problem that cannot 
be scaled using traditional databases and 
analysis systems. Medical data over time 
combined with genomic data becomes a big 
data problem due primarily to volume and 
variety and becomes a velocity problem with 
the use of real-time data.

New methods for big data parallel pro-
cessing have been developed using a func-
tional program paradigm. With these new big 
data approaches, the algorithms are brought 
to where the data are instead of shipping 
the data to different cores in a computing 
environment. The methods are based on 
Google’s file system [34] and BigTable [35], 
a sparse, distributed, persistent multidimen-
sional sorted map that increases performance 
by taking a large number of records and 
parallelizing their processing over many 
machines. An ecosystem of open source 
tools (e.g., Hadoop, MapReduce, Spark, 
HBase, Accumulo, Mahout, CouchDB and 
MongoDB) have been implemented and ap-
plied to big data problems such as Facebook’s 
real-time messaging environment [36]. The 
use of NoSQL database solutions combined 
with parallelized MapReduce jobs applied 
to medical data has the potential to change 
the way deep phenotypes are constructed. 
The discovery of deep phenotypes can be 
expanded and scaled through the use of big 
data methodologies to include patterns of 
time series of events from the EHR. 
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 Another strength of the big data Hadoop 
system is the ability to commoditize the use of 
hardware for scaling data storage and compu-
tation. New nodes can be added to scale with 
storage needs. Because the knowledge around 
genomic variant and omics data will change 
significantly over time, computationally 
powerful and dynamic systems are needed 
that can re-analyze data as new knowledge 
is created. A value added component of big 
data systems is the ability to store and process 
variant information and utilize it when its 
relevance is identified. Given the growth of 
genomic data in clinical systems, such as the 
VA’s Million Veterans Project, the ability to 
incrementally scale the storage and analysis 
platform is highly desirable.

Discussion
Data integration is a key component to 
building huge data systems filled with bi-
ological, genomic, clinical, phenotype and 
other health related data. Data integration 
involves combining or linking data from 
multiple sources to enable data sharing, 
expanded data sets, secondary analysis/reuse 
of data and broadening multidisciplinary 
collaborations. In Seoane et al. [37] review 
of data integration in genomic medicine, they 
observed that data integration approaches of 
cross-linking, data warehouses and federa-
tion are suitable for particular applications, 
but are not general solutions. The problem is 
a plethora of small heterogeneous data sets 
that resist integration through the complexity 
of variety. The cases of EHR data, omics data 
and deep phenotyping involve the big data 
variety problem. Hadoop data stores offer 
a new approach to reduce and manage the 
complexity of high variety data.

Although difficult, the variety problem in 
big data can be addressed through the use of 
BigTable paradigm because the data can be 
stored in a raw format and transformed at the 
time it is needed with as much precision as 
the raw format encodes. Rather than the data 
warehouse paradigm that needs to harmonize 
to a canonical representation, the new big 
data methods for integration have the ability 
to store data without normalizing it in a re-
lational data model. The reference standard 

approach supports the management of the 
flexible markup of patient records along with 
using ontologies to organize and search those 
records [4]. The phenotype and genotype of 
the patient can then be maintained through 
the denormalized markup language devel-
oped for knowledge discovery in EHR data. 
The NoSQL solution does not preclude the 
development of standardized representations; 
it just does not make heavy standardization 
and normalization a prerequisite to integrating 
high variety data into the system.

Using deep phenotype information at the 
point of care introduces the need for real-time 
analysis to meet the requirements of point of 
care services. To present potential deep phe-
notypes to the clinician that incorporates time 
series data from the EHR, the analysis system 
needs to have parallelizable components that 
can break the task into independent chunks. 
This enables parallel algorithms to speed 
processing time and to deliver results with 
acceptable response times.

Given the existence of scalable big data 
stores and analysis capabilities, deep pheno-
typing analysis can be applied to time series 
and trending information in medical records. 
Clinical data are loaded into the Hadoop 
cluster and analyzed along with other data 
within the cluster. Having all the data within 
the Hadoop cluster allows phenotype and 
genotype data to be linked and analyzed on 
a common platform. The analysis approach 
involves writing the appropriate MapReduce 
program to assess similarity of patients 
in deep phenotypic cohorts. The Mahout 
MapReduce code base has been developed 
for machine learning using Hadoop. It 
implements learning algorithms such as 
nearest neighbor and handles running the 
mappers and reducers across a cluster and 
outputs the resulting classification model. 
Mahout provides a solution within the Ha-
doop framework to parallelize analysis and 
increase performances to potentially address 
speed requirements at point of care.

Conclusions
The scientific advances in the types of data 
available and the diversity of algorithms for 
phenotyping analysis of clinical data put 

software development further behind. Tra-
ditional relational data warehouses are well 
suited for facts aggregation over dimensions 
that can be preconfigured for fast query 
answering. This is useful for identifying 
patterns indexed by dimension tables, but is 
difficult to apply to time series information, 
which is core to understanding or predicting 
a patient’s health trajectory. A patient’s health 
information over time is critical for deep 
phenotyping. Specifically, it is necessary to 
understand a patient’s response to treatment 
where clinical measurement trends with the 
delivery of a therapeutic intervention. New 
approaches are needed to deal with the scale 
of clinical data and the rapidly expanding 
diversity of algorithms. These approaches, 
heralded in Stead et al. [4], focus on simple 
data models augmented by extensive, flexible 
indexing driven by raw computing power.

Many of the discussed challenges are 
tightly intertwined and are critical for 
achieving precision medicine. Omics is an 
extremely dynamic field and our knowledge 
about the effects associated with the differ-
ent variants is continuously evolving and 
being updated. Analysis and interpretation 
of omics data are supported by the existing 
knowledge and predictions available at the 
moment of the analysis. Interpretation of 
some variants may change over time and it 
is necessary to keep open the possibility of 
reinterpreting the data using the advances in 
knowledge and interpretation of the human 
variants as well as applying improved ana-
lytical tools and pipelines. Advances require 
gaining access to new and extended datasets 
that inform knowledge discovery on health 
and diseases across different populations. 
For this reason it is important that omics 
data are accessible for research purposes 
under the appropriate ethical approval. The 
relevance of this sharing process for research 
comes because in many aspects and despite 
the noise and difficulties to mine and extract 
information from the EHRs, they represent 
the best data annotation source, that when 
combined with omics data, can advance the 
practice of precision medicine.

By treating EHR data as clinical event 
streams, a number of new big data methods 
can be developed and adapted from the tech-
nology sector. The content of these streams 
can be processed in combination with strat-
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egies for conceptual markup of events and 
matching of event streams, to rapidly retrieve 
and identify phenotypes. Specifically, big 
data solutions can use tagged data coupled 
with ontologies to identify phenotypes. The 
growth of clinically relevant deep phenotyp-
ing in this genomic medicine era depends on 
the application of flexible and evolving ap-
proaches to nosology, that is in turn, enabled 
by a move to new, computational-intensive 
big data architectures.

Acknowledgments
The authors LJF and LL were supported by 
the grant 1R01GM108346-01:BIGDATA: 
Mid-Scale: DA: Techniques to Integrate 
Disparate Data: Clinical Personalized 
Pragmatic Predictions of Outcomes (Clin-
ical3PO; Co-PIs: Lenert & Frey) awarded 
by the National Institute of General Medical 
Sciences: NIGMS.

References
1. Cases M, Fulong LI, Albanell J, Altman RB, 

Bellazzi R, Boyer S, et al. Improving data and 
knowledge management to better integrate health 
care and research. J Intern Med 2013:321-8.

2. Starren J, Williams MS, Bottinger EP. Crossing the 
omic chasm: a time for omic ancillary systems. 
JAMA 2013 Mar 27;309(12):1237-8.

3. Masys DR, Jarvik GP, Abernethy NF, Anderson 
NR, Papanicolaou GJ, Paltoo DN, et al. Technical 
desiderata for the integration of genomic data into 
Electronic Health Records. J Biomed Inform 2012 
Jun;45(3):419-22.

4. Stead WW, Kelly BJ, Kolodner RM. Achievable 
Steps Toward Building a National Health Infor-
mation Infrastructure in the United States. J Am 
Med Inform Assoc 2005;12(2):113-21.

5. Rabbani B, Mahdieh N, Hosomichi K, Nakaoka 
H, Inoue I. Next-generation sequencing: impact 
of exome sequencing in characterizing Mendelian 
disorders. J Hum Genet 2012 July:621-32.

6. Robinson, PN. Deep Phenotyping for Precision 
Medicine. Hum Mutat 2012;33(5):777-80.

7. Dawkins R. The Extended Phenotype. Oxford: 
Oxford University Press; 1989.

8. Hripcsak G, Albers DJ. Next-generation phenotyp-
ing of electronic health records. J Am Med Inform 
Assoc 2013;20(1):117-21.

9. Darvasi A. Experimental strategies for the genetic 

dissection of complex traits in animal models. Nat 
Genet 1998;18:19-24.

10. Doelken SC, Mungall CJ, Bauer,S, Firth HV, Bail-
leul-Forestier I, Black GCM., et al. The Human 
Phenotype Ontology project : linking molecular 
biology and disease through phenotype data. 
Nucleic Acids Res 2013:1-9.

11. Girdea M, Dumitriu S, Fiume M, Bowdin S, 
Boycott KM, Chitayat D, et al. PhenoTips: Patient 
Phenotyping Software for Clinical and Research 
Use. Hum Mutat 2013;34(8):1057-65.

12. Bodenreider O. The Unified Medical Language 
System (UMLS): integrating biomedical termi-
nology. Nucleic Acids Res 32 (Database issue). 
2004:267-70.

13. Bodenreider O, Burgun A. Aligning knowledge 
sources in the UMLS: methods, quantita-
tive results, and applications. Medinfo Proc 
2004:327–31.

14. Wilson PS, Scichilone RA. LOINC as a data 
standard: how LOINC can be used in electronic 
environments. J AHMIA 2011;82(7): 44-47.

15. Nelson SJ, Zeng K, Kilbourne J, Powell T, Moore 
R. Normalized names for clinical drugs: RxNorm 
at 6 years. J Am Med Inform Assoc 2011; 8:441-8.

16. International Classification of Diseases version 
9. [15 December 2013]; http://www.icd9data.
com/2006/Volume1/

17. Melton GB, Parsons S, Morrison FP, Rothschild 
AS, Markatou M, Hripcsak G. Inter-patient 
distance metrics using SNOMED CT defining 
relationships. J Biomed Inform 2006;39:697-705.

18. Robinson PN, Mundlos S. The Human Phenotype 
Ontology. Clin Genet 2010;77:525-34.

19. McKusick VA. Mendelian Inheritance in Man. A 
Catalog of Human Genes and Genetic Disorders. 
Baltimore: Johns Hopkins University Press; 1998 
(12th edition).

20. Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken 
S, Ott CE, et al. Clinical Diagnostics in Human 
Genetics with Semantic Similarity Searches in 
Ontologies. Am J Hum Genet 2009;85:457-64.

21. Hajihashemi Z, Popescu M. An Early Illness 
Recognition Framework Using a Temporal Smith 
Waterman Algorithm and NLP. Proc AMIA Fall 
Symp 2013:549-57.

22. Wang TD, Plaisant C, et al. Aligning Temporal 
Data by Sentinel Events: Discovering Patterns in 
Electronic Health Records. CHI 2008 Proceedings: 
Health and Wellness, Florence, Italy; 2008.

23. Wongsuphasawat K, Gomez JAG, et al. LifeFlow: 
Visualizing an Overview of Event Sequences. CHI 
2011, Vancouver, BC, Canada; 2011.

24. Wongsuphasawat,K, Gotz DH. Outflow: Visual-
izing Patient Flow by Symptoms and Outcome. 
IBM; 2011. p. 1-4.

25. Lee WN, Das AK. Local Alignment Tool for Clini-
cal History: Temporal Semantic Search of Clinical 
Databases. AMIA Annu Symp Proc 2010:437–41.

26. Lee WN, Bridewell W, Das AK. Alignment and 

Clustering of Breast Cancer Patients by Longitu-
dinal Treatment History. AMIA Annu Symp Proc 
2011;2011:760-7.

27. Ayres J, Gehrke J, Yiu T, Flannick J. Sequential 
Pattern Mining using a Bitmap Representation. 
In: SIGKDD’02, Edmonton, Canada; 2002 July.

28. Papapetrou P, Kollios G, Sclaroff S, Gunopulos 
D. Mining frequent arrangements of temporal 
intervals. Knowl Inf Syst 2009;21(2):133–71.

29. Shahar Y, Goren-Bar D, Boaz D, Tahan G. Dis-
tributed, intelligent, interactive visualization and 
exploration of time-oriented clinical data. Artif 
Intell Med 2006;38(2):115–35.

30. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor 
HK, Dent KM, et al. Exome sequencing identifies 
the cause of a mendelian disorder. Nat Genet 2010 
Jan;42(1):30-5.

31. Reese MG, Moore B, Batchelor C, Salas F, Cun-
ningham F, Marth GT, et al. A standard variation 
file format for human genome sequences. Genome 
Biol 2010;11(8):R88.

32. McCarty CA, Chisholm RL, Chute CG, Kullo IJ, 
Jarvik GP, Larson EB, et al. The eMERGE Net-
work : A consortium of biorepositories linked to 
electronic medical records data for conducting ge-
nomic studies. BMC Med Genomics 2011;4(1):13.

33. Newton KM, Peissig PL, Kho AN, Bielinski 
SJ, Berg RL, Choudhary V, et al. Validation of 
electronic medical record-based phenotyping 
algorithms : results and lessons learned from 
the eMERGE network. Medical Informatics 
2013;20:e147-e154.

34. Ghemawat S, Gobioff H, et al. The Google File 
System. SOSP’03, Bolton Landing, New York, 
USA; 2003.

35. Chang F, Dean J, et al. Bigtable: A Distributed 
Storage System for Structured Data. OSDI ‘06: 
7th USENIX Symposium on Operating Systems 
Design and Implementation; 2006. p. 205-18.

36. Borthakur D, Sarma JS, et al. Apache Hadoop 
Goes Realtime at Facebook. SIGMOD ‘11, Athens, 
Greece. 2011.

37. Seoane JA, Dorado J, Pazos A. Data Integration 
in Genomic Medicine: Trends and Applications. 
IMIA Yearbook 2012: Personal Health Informatics 
2012:117-25.

Correspondence to: 
Lewis J Frey
Chair IMIA Genomic Medicine WG
Biomedical Informatics Center
Public Health Sciences, Associate Professor
Hollings Cancer Center, Research Member
Medical University of South Carolina 
135 Cannon Street, Suite 405K, MUSC 200
Charleston, SC 29425. USA
Tel: +1 843 792 4216
Fax: +1 843 792 5587
E-mail: Frey@musc.edu


