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Abstract
Smoking increases the risk of abdominal aortic aneu-
rysm (AAA) in both humans and mice, although the un-
derlying mechanisms are not completely understood. 
An adventitial aortic antigen, AAAP-40, has been par-
tially sequenced. It has motifs with similarities to all 
three fibrinogen chains and appears to be connected 
in evolution to a large family of proteins called fibrin-
ogen-related proteins. Fibrinogen may undergo non-
-enzymatic nitration, which may result from exposure 
to nitric oxide in cigarette smoke. Nitration of proteins 
renders them more immunogenic. It has recently been 
reported that anti-fibrinogen antibody promotes AAA 
development in mice. Also, anti-fibrinogen antibodies 
are present in patients with AAA. These matters are re-
viewed in the overall context of autoimmunity in AAA. 
The evidence suggests that smoking amplifies an au-
to-immune reaction that is critical to the pathogenesis 
of AAA.
Copyright © 2017 Science International Corp.
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Introduction

Compared with the relatively small effects of ge-
netic mutations or polymorphisms on the risk for ab-
dominal aortic aneurysm (AAA), smoking presents a 
much greater risk by as much as an order of magni-
tude. For example, the risk-odds ratio of a well-estab-
lished polymorphism associated with AAA, DAB2IP 

on chromosome 9q33.2, is 1.2 [1], and the risk-odds 
ratio for another polymorphism on 9p21 is 1.3 [2]. By 
contrast, the risk-odds ratio for heavy smoking is 12.0 
[3], comparable only to the risks of age and male sex. 
Smoking also promotes aneurysm formation in lab-
oratory mice [4, 5]. A molecular explanation for the 
effect of smoking has been proposed [6]. The pur-
pose of this communication is to explain the hypoth-
esis that nitric oxide (NO) in tobacco smoke nitrates a 
protein related to the fibrinogen superfamily in the 
aortic adventitia and thus enhances its antigenicity. 
In particular, I discuss four factors that are often asso-
ciated with diseases of autoimmunity [7, 8]: genetic 
susceptibility, inflammation, matrix metalloprotein-
ases (MMPs), and antibodies and autoantigens.

Human Genetics of AAA

Clifton reported three brothers affected with AAA 
in 1977 [9]. In 1978, the author operated on a friend 
and colleague to repair an AAA and bilateral popliteal 
artery aneurysms on separate occasions. The patient 
was otherwise healthy, fit, normotensive, and nor-
mocholesterolemic. His angiographic studies were 
unremarkable except for his aneurysms. There was 
no detectable atherosclerosis. His mother had died 
of a ruptured AAA, raising the question of whether 
a genetic predisposition was at work. In 1980, we re-
ported on numerous differences between groups of 
patients undergoing aortic surgery for AAA versus oc-
clusive (OCC) disease [10]. These differences (age, sex, 
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and other features) provided a basis for questioning 
the notion that atherosclerosis causes AAA. These an-
ecdotes are just a few factors that drew me into a ca-
reer-long interest in the human genetics of AAA and 
the pathobiology of the disease.

Our first effort at clinical genetics in 1984 was a 
small study of patterns of inheritance in 14 families 
with a total of 41 affected members [11]. The con-
clusion from this analysis was that there might be 
X-linked and autosomal dominant forms of the dis-
ease. Extending this study to include a total of 50 
families, we concluded that if there was only a single 
locus explaining the inheritance of AAA disease, it 
was likely to be autosomal dominant [12]. 

Many confirmations of the hypothesis of a genetic 
association followed. The first study with a proper 
control group was performed by Johansen and Ko-
epsell [13], who reported on the family histories of 
250 AAA patients and 250 control patients. Whereas 
19.2% of AAA patients reported an affected first-order 
relative, only 2.4% of control patients were aware of 
an affected relative. The possibility that being born 
into a smoking family might have a “paragenetic” ef-
fect was not considered in the early studies. I use the 
neologism “paragenetic” to suggest that a phenotype 
may run in families without a genetic basis. For exam-
ple, if both parents are non-smokers and disapprove 
of smoking, it seems less likely that their children will 
take up the habit.

Initial efforts to root the genetic hypothesis in a 
molecular basis involved the candidate gene ap-
proach [14]. Our first contribution implicated the 
TIMP-1 gene [15], which was subsequently confirmed 
by a larger study [16]. Another interesting candidate 
was the major histocompatibility complex molecular 
locus DR-15 (originally protein DR-2) [17, 18]. Other 
investigators also showed interest in the major histo-
compatibility complex [19]. In addition, we found an 
identical amino acid substitution in the ferritin light 
chain gene in 2 of 19 AAA patients [14].

Collagen XI-alpha 1 was of special interest to our 
laboratory for multiple reasons. It was overexpressed 
38-fold in a AAA-derived fibroblast cell line (a clear 
outlier) relative to a cell line from normal aortic fibrob-
lasts. It was subject to alternative slicing, with carti-
lage- and aorta-specific variants in exon 6. Further-
more, it was selectively expressed in the  adventitia 

of the normal aorta. Sequencing of exon 6 revealed a 
heterozygous G>T signal 70 bp upstream from exon 6 
in 14 of 19 consecutive AAA samples [14]. 

A plethora of additional genes were proposed by 
others, and the situation became more complicated. 
In 2007, Sandford et al. summarized a decade of ef-
fort [20], concluding that “while the candidate gene 
approach has led to significant advances in under-
standing the pathogenesis of AAA, it is unlikely that 
a single gene polymorphism will hold the key to an-
eurysm formation. Whole gene studies are likely to 
be required…”. These studies are now referred to as 
genome wide association studies (GWAS).

An advantage of GWAS is that no knowledge 
of AAA pathobiology is required, as it is a brute 
force approach. A disadvantage is that it is inher-
ently large-scale and resource-intensive. A recent 
meta-analysis of six GWAS datasets with a total 
of 10,204 AAA patients and 107,766 control pa-
tients had 116 multinational co-authors [21]. Four 
novel single nucleotide polymorphisms (SNPs) 
were identified and added to a list of five others 
identified from previous studies. The pathobiolog-
ical roles of all nine SNPs in AAA disease remain 
unknown. The summary situation is mostly un-
changed since the review by Saratzis et al. in 2015 
[22], which concludes that AAA represents a “multi-
factorial disease, with the likelihood that there are 
multiple variants of very low effect contributing to 
the overall genetic disease risk.” Thus, the genetic 
approaches that seemed so promising 25 years ago 
have failed to uncover a “smoking gun.”

This discussion would be incomplete without 
mentioning that we are now entering a “post-G-
WAS” era [23]. Another problem with GWAS is that 
the variations detected so far occur in non-coding 
DNA sequences, so their significance is not obvious. 
An alternative has been adoption of the epigenetic 
approach. Epigenetics refers to stable differences in 
gene expression that are “not attributable to DNA se-
quence variation” [24]. Joehanes et al. [25] report that 
the “epigenetic signatures of cigarette smoking” re-
flect “a broad impact on genome-wide methylation.” 
In addition to  methylation, the study of microRNAs 
is another example of an epigenetic modification. 
No doubt there will be interesting developments in 
these areas in the future.
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The Role of Inflammation

In 1986, Beckman proposed that autoimmunity 
plays a role in the pathogenesis of AAA [26]. Beckman 
observed an infiltration of plasma cells in 31 of 156 
AAA specimens from patients who were not thought 
on clinical grounds to be examples of the “inflammato-
ry variant” of aneurysms. He speculated that there was 
an immune reaction against atherosclerotic elements 
in the AAA wall, consistent with the view at that time 
that atherosclerosis causes non-specific aneurysms 
(the term “non-specific” is used because the Joint Com-
mittee on Reporting Standards, sponsored by the So-
ciety of Vascular Surgery and International Society for 
Cardiovascular Surgery, recommended in 1991 that 
this terminology replace the conventional usage “ath-
erosclerotic aneurysm” due to insufficient evidence 
that atherosclerosis actually caused the  disease [27]).

Another example of a Th2 (allergic or autoim-
mune) response appeared in 1990 [28], when I was 
invited to write a book chapter on the pathology of 
AAA. The assistance of a pathologist at Yale Univer-
sity School of Medicine was enlisted (G. J. W. Smith), 
and a “séance” was arranged to compare a tray of AAA 
slides with a tray of atherosclerotic aortic slides. One 
of the most conspicuous findings was the virtual ab-
sence of iron-hematoxylin-reactive elastin in the me-
dia of AAA specimens. Another finding was that there 
was inflammatory infiltrate in AAA at the junction of 
the outer media with the adventitia. In some cases, 
this infiltrate was so impressive that our pathologist 
remarked that it was reminiscent of that seen when 
syphilis was common. The infiltrate was primarily 
plasmacytic, and there were Russell bodies within ar-
eas of inflammation.

Russell bodies are eosinophilic aggregates of im-
munoglobulin G (IgG) seen in plasma cells undergo-
ing excessive synthesis of antibodies in autoimmune 
conditions. They reflect an overstuffed endoplasmic 
reticulum. The role of inflammation in the etiology 
of AAA was further elaborated by Brophy et al. in 
1991 [29]. A conspicuous mononuclear infiltrate was 
present in 8 of 10 specimens, primarily located at the 
adventitial/medial junction. The presence of Russell 
bodies was confirmed. In addition, large quantities of 
immunoglobulins were extractable from AAA tissue 
by affinity to protein A.

Evidence for a Th-1 (cytotoxic) response appeared 
in 1990, when Koch et al. formally proposed that “im-
munophenotypic analysis suggested an immune-me-
diated response” in non-specific AAA [30]. The analysis 
was based on 32 specimens: 4 normal aortas (NLs), 6 
OCC aortas, 17 AAAs, and 5 inflammatory AAAs (IAA). 
Monoclonal antibodies were used to identify the var-
ious cell types. The extent of inflammatory infiltrate 
was IAA > AAA > OCC > NL. The authors interpreted 
these findings as a spectrum, suggesting that a single 
disease progressed from OCC to AAA. I advanced the 
notion that AAA and OCC are two separate disease 
processes with common risk factors like smoking and 
hypertension. The aneurysm might actually initiate 
atherosclerotic degeneration of the subendothelium 
[31, 32]. A study in mice suggests that aortic dissec-
tions precede the onset of atherosclerosis [33]. Other 
investigators have suggested that the two processes 
may be “running in parallel” [34].

More recent studies have significantly expanded 
the evidence for a Th-1 response in AAA [35, 36]. Am-
plification of beta-chain T-cell receptor transcripts 
from AAA lesions suggests that 9 of 10 patients have 
substantial proportions of identical polymerase chain 
reaction products. The authors conclude that “AAA is 
a specific antigen-driven T-cell disease.”

Matrix Metalloproteinases

MMP activation or deregulation is a typical  feature 
of autoimmune diseases. Loss of elastin is a sentinel 
histochemical feature of AAA, and Reilly et al. were 
the first to report that the “killer elastase” is a metal-
loproteinase with a molecular weight of ~80 kDa 
[37]. We subsequently identified it as gelatinase B or 
MMP-9 [38]. Mammalian collagenase (MMP-1) [39] 
and stromelysin (MMP-3) [40] are also present. Im-
munohistochemically, MMP-9 is co-distributed with 
macrophages, whereas MMP-1 is associated with 
endothelial cells of neovascularizing vessels and 
mesenchymal-like cells in the infiltrate [41]. MMP-2 is 
expressed by a fibroblast cell line cultured from a hu-
man AAA explant but not by a normal aortic cell line. 
The MMP-2 cell line is stable in its expression of MMP-
2 over multiple passages (unpublished observations). 
Cytokines that regulate these MMPs are also elevated 
in AAA [42].
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These observations are interesting, but they are 
phenomenological and do not establish causal rela-
tionships. The development of gene knockout (KO) 
technology in inbred mice has led to a new era in AAA 
experimentation. For example, Pyo et al. [43] report 
that AAA does not develop in MMP-9 null/null mice 
in the elastase-perfusion model. The AAA-susceptible 
phenotype is “rescued” by bone marrow transplanta-
tion (macrophages) from wild-type mice. These stud-
ies show that MMP-9 is a necessary condition for AAA. 
A similar strategy was employed by Longo et al. [44] 
in the abluminal (peri-adventitial) calcium chloride 
model. No aneurysms occurred in MMP-9 or MMP-
2 KO mice, suggesting that both macrophage- and 
mesenchymal-derived MMPs are required and may 
work in concert to produce AAA.

It is possible that the nicotine in burning tobacco 
(and not some other component of the smoke) initi-
ates or promotes the smoking/AAA association. Nico-
tine exposure equivalent to plasma levels in smokers 
augments MMP-9 and MMP-2 expression by macro-
phage and vascular smooth muscle cell lines in vitro 
[45]. Of course, in vitro findings do not always trans-
late smoothly to the situation in vivo. Bergoeing et 
al. [4] found that cigarette smoking increases aortic 
dilatation in vivo without affecting the expression 
of MMP-9 or MMP-12. Wang et al. [46] report that 
acute infusions of nicotine produce aneurysms in 
Apo-E-deficient mice, but the aneurysms that occur 
in this model resemble those induced by angiotensin 
(Ang) II. In our experience, these AAAs begin as aortic 
dissections and not as a typical fusiform AAAs. Guo et 
al. [47] report that the JNK inhibitor, SP600125, atten-
uates the nicotine plus Ang II model of AAA forma-
tion, but again, these AAAs are false aneurysms.

Maegdefessel et al. [48] report that nicotine pel-
lets (versus placebo) augment aneurysmal expansion 
in the elastase-perfusion model. This model avoids 
some of the difficulties of the Ang II model. It also 
avoids the problem of “smoker’s hypertension” that 
develops in chronically smoke-exposed mice [49], 
which may independently promote AAA formation. 
Blood pressure measurements at 14 days showed no 
difference between nicotine and placebo groups, but 
more extensive observations might be useful to rule 
out this potentially misleading possibility. Of course, 
a direct effect of nicotine in pellets and enhancement 

of autoimmunity by smoke are not mutually exclu-
sive as valid explanations of the smoking/AAA asso-
ciation.

Antibodies and Autoantigens

Capella et al. [50] carried out experiments to de-
termine whether increases in IgG in AAA tissue are 
subclass-specific (by enzyme-linked immunosor-
bent assay (ELISA) with monoclonal antibodies) and 
whether the IgG complex is associated with increases 
in complement C3. Seven AAA, four OCC, and two NL 
aortic specimens were evaluated. Comparing by sub-
class, IgGs were elevated in AAA over NL by 193× for 
IgG1, 160× for IgG2, 389× for IgG3, and 627× for IgG4. 
Increases in IgGs in AAA specimens over NL and OCC 
specimens by subtype were statistically significant 
(p < 0.01). ELISA showed a 125× increase in immu-
noreactive C3 in soluble extracts of AAA, and Western 
immunoblots revealed multiple C3 immunoreactive 
isoforms or degradation products.

With evidence that immunoglobulins are recoverable 
from AAA tissue, interest intensified to find the aortic 
autoantigen(s). Gregory et al. [51] purified Ig from serial 
AAA specimens and found that it was immunoreactive 
with a protein of ~80 kDa in Western blots of 11 of 14 
(79%) AAA patients versus 1 of 9 (11%) control patients 
(p = 0.002, Fisher’s exact test). By immunohistochemis-
try, antibodies extracted from AAA specimens were im-
munoreactive with a microfibrillar protein in the matrix 
of the adventitia of the normal aorta.

This experiment was repeated by Chew et al. [52], 
who confirmed that AAA immunoglobulins are im-
munoreactive with a matrix protein of ~80 kDa, ex-
tractable from aneurysmal aortas by high concentra-
tions of guanidinium hydrochloride. We inferred that 
this was a dimeric form of an AAA antigenic protein 
with a molecular weight of ~40 kDa, which had been 
affinity-purified with antibodies from AAA specimens 
[53]. This protein was named AAAP-40 for aneu-
rysm-associated antigenic protein 40 kDa.

The partial amino acid sequence of AAAP-40 was 
determined. It had homology to a protein in pig with 
an aorta-specific tissue distribution. The porcine pro-
tein had been discovered and named microfibril-as-
sociated glycoprotein 36 KDa by Kobayashi et al. [54]. 
AAAP-40 has seven tyrosine residues, including one 
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tyrosine  doublet, which are prime sites for nitration 
[55]. AAAP-40 also has short homologies with all three 
chains of fibrinogen, suggesting that its evolutionary 
history placed it close to the common ancestor of the 
three modern chains. We calculated the evolutionary 
distance of AAAP-40 from fibrinogen-beta (measured 
in point-accepted mutation rates [PAMs]; among fi-
brinogen-related proteins [FRePs], a PAM unit is about 
a million years). Only 30 PAMs separated AAAP-40 
from fibrinogen-beta [56]. These results agreed with 
a neighbor-joining tree computing the relatedness 
of MAGP-36, AAAP-40, MFAP-4, and a “fibrinogen-like 
protein of the sea cucumber” [57].

Antibody against a unique amino acid sequence of 
AAAP-40 (not found in any other mammalian protein) 
was immunoreactive with adventitial microfibril of the 
human aorta and selected other vessels [58, 59]. This 
antibody was also immunoreactive with a microfibril-
lar protein in mouse aortic adventitia [60].  Figure  1
illustrates that a commercial antibody against fibrino-
gen-beta is immunoreactive with a microfibrillar pro-
tein in the human aortic adventitia. Figure  2 shows 

that AAAP-40 is site-specifically expressed in the hu-
man arterial tree. It is abundant in the aorta, common 
iliac, internal iliac, and popliteal arteries but is barely 
detectable in the external iliac artery. This distribution 
corresponds to the susceptibility of the different ves-
sels to aneurysm formation [10, 61]. Taken together, 
these observations suggest that the AAA autoantigen 
is a normal constituent of the aortic adventitia and not 
a product of atheromatous degeneration.

Smoking Promotes AAA in Mouse Models

Stolle et al. [5] report that cigarette smoke promotes 
AAA in an Ang II/Apo-E-deficient mouse model. Al-
though it is notable that smoke exerts effects in this 
model, we found that APO-E deficiency is not required 
for AAA formation. We had success in inducing AAA in 
normal C57/Bl6 mice that were selected only for ad-
vanced age (i.e., retired breeders) [62, 63].

Bergoeing et al. [4] adapted the elastase perfusion 
mouse model to determine whether tobacco smoke 
lowers the threshold of aortic injury required for AAA 
development. The adaptation involved changing the 
concentration of elastase in the perfusate, resulting 
in high-dose, standard-dose, and low-dose regimens. 
Exposure to tobacco smoke began 2 weeks before 
perfusion and continued until sacrifice 2 weeks after 

Figure 1. Tissue sections from the adventitia of a normal 
human (cadaver donor) aorta photographed at 400×. An 
immunohistochemical stain (Gomori’s aldehyde fuchsin) was 
used for microfibril-associated glycoprotein (MAGP). Verhoeff›s 
elastic stain (EVG) was used for collagen (pink) and elastin 
(black). Immunohistochemistry employed rabbit anti-human 
fibrinogen as a primary antibody and goat anti-rabbit Ig as a 
secondary antibody. No primary antibody was used as a control. 
MAGP and fibrinogen co-distributed with collagen (pink) in EVG 
staining. The elastin of the adventitia did not have the lamellar 
organization characteristic of the arterial media.

Figure 2. Immunohistochemical studies of human arterial 
segments from the autopsy of a patient with no abdominal 
aortic aneurysm (AAA) and minimal occlusive disease. The 
antibody was rabbit anti-human AAAP-40, raised against a 
synthetic peptide, based on a unique sequence not found in 
any other mammalian protein (-GMAKEYDGFQYT). Staining 
was performed in one batch for all sections. Immunoreactive 
protein stained blue in the adventitia of the aorta and the 
aneurysm-prone popliteal, internal, and common iliac arteries. 
The aneurysm-resistant external iliac artery exhibited minimal 
staining. We were surprised to note staining of the carotid artery, 
but this finding may explain the elongation often seen in AAA 
patients.
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perfusion. Smoking resulted in larger aneurysms in 
low-dose mice (aortic diameter increased by 134%) 
compared with non-smoking low-dose mice. There 
was no difference in MMP-9 expression between 
smoking and non-smoking mice.

In parallel with human AAA disease, after a 
mouse model has been initiated by smoke expo-
sure, enhanced expression of the aneurysm phe-
notype persists even after a smoke-free interval. 
Jin et al. [64] found that after smoke exposure for 6 
weeks followed by no smoke exposure for another 
6 weeks, the promoting effect was still in force. 
They proposed three possible explanations for the 
smoking effect: 1) a persistent increase in MMP ac-
tivity; 2) a persistent direct injury to the aorta; or 
3) promotion of an immune response. They found 
that smoking overrode MMP effects, as the smok-
ing effect persisted even in doxycycline-treated 
mice or those with null/null elastolytic deficien-
cies. Injury to the aorta was ruled out by direct 
electron microscopic studies. Thus, the promotion 
of an immune response was favored because leu-
kocytes from smoke-exposed mice localized to the 
aneurysms of smoke-free mice and increased their 
aortic diameters. Apparently, after leukocytes are 
initiated, possibly by exposure to nitro-tyrosine in 
aortic FRePs, they acquire memory for promoting 
an autoimmune response.

Zhou et al. [65] identified a natural IgG antibody 
in mice that binds to fibrinogen and initiates the in-
flammatory response that culminates in AAA devel-
opment. They found that a mouse anti-fibrinogen an-
tibody enhances AAA formation. Also, they reported 
that AAA patients have circulating antibodies against 
“fibrinogen or fibrinogen-associated epitopes in hu-
man aneurysmal tissue”. This finding confirms the ra-
tionale for the use of ELISA to detect antibodies as a 
screening test for the disease as proposed by Knoet-
gen et al. in 1997 [66].

Smoking-Induced Nitration of Plasma and Tissue 
Proteins

Tyrosine nitration is a modification that may change 
the rate of proteolytic degradation of nitrated  proteins. 
Protein nitration in cardiovascular diseases has been 
extensively reviewed by Turko and Murad [67]. The au-

thors note that the process is selective (e.g., residue-, 
protein-, and tissue-specific). Not all tyrosine residues 
of a protein are nitrated, and not all proteins are targets 
for nitration. Typically, one or two tyrosine residues 
are site-specifically nitrated. The product of nitration 
is 3-nitro-tyrosine, which has been established as a 
biomarker of “nitro-oxidative stress” [68].

Nitrotyrosine in plasma proteins is increased in 
smokers with chronic obstructive pulmonary disease, 
consistent with “increased nitration associated with 
inflammatory processes” [69]. Nitrated plasma pro-
teins are also increased in lung cancer patients [70]. 
Fibrinogen is among the plasma proteins that are ni-
trated.

Our interest in this subject matter arose in the 
context that cigarette smoke contains substantial 
amounts of NO [71]. We found that the nitrite content 
of AAA tissue is comparable to levels that were once 
considered possibly carcinogenic in smoked sausage 
[72]. This concentration of nitrite (but not nitrate) 
damages the aortic matrix in vitro [73] and leads to 
tyrosine depletion in a solution of collagen [74]. Im-
munogenicity of tyrosine-nitrated self- proteins has 
been reviewed in the context of understanding the 
mechanisms leading to autoantibody production 
[55]. Structurally modified self-proteins give rise to 
new epitopes to which T and B lymphocytes are not 
tolerant. These nitrated proteins elicit cellular and hu-
moral responses in mice.

The Smoking/Autoimmune Hypothesis

AAA has features of an autoimmune disease. In-
flammation is rampant, and autoantigens are iden-
tifiable with purified auto-antibodies. The principal 
auto-antigen appears to be a microfibrillar protein 
with similarities to fibrinogen localizing to adventitia 
of the aorta. It has seven loci for potential tyrosine ni-
tration. NO in tobacco smoke may nitrate this protein, 
which would be expected to enhance its immuno-
genicity. Anti-fibrinogen antibodies promote AAA in 
mouse models. Finally, antibodies against fibrinogen 
are detectable in humans with AAA. These findings 
suggest that smoking heightens autoimmunity in 
AAA in humans and mice. The autoimmune hypoth-
esis does not exclude other possible explanations for 
the smoking/AAA association.
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