Nuklearmedizin 2007; 46(03): 107-111
DOI: 10.1160/nukmed-0037
Original Article
Schattauer GmbH

Equipment-independent reference values for dopamine transporter imaging with 123I-FP-CIT

Kameraunabhängige Referenzwerte für die Dopamintransporterbildgebung mit 123I-FP-CIT
W. Koch
1   Department of Nuclear Medicine, Germany
,
J. Hornung
1   Department of Nuclear Medicine, Germany
,
C. Hamann
2   Neurology, University of Munich, Germany
,
G. Pöpperl
1   Department of Nuclear Medicine, Germany
,
K. Tatsch
1   Department of Nuclear Medicine, Germany
› Author Affiliations
Further Information

Publication History

Received: 01 August 2006

accepted in revised form: 15 February 2007

Publication Date:
28 December 2017 (online)

Summary

Aim: Reliable reference values are helpful to interpret and compare the results of dopamine transporter imaging with SPECT. Since semi-quantitative reference values cannot be easily transferred between imaging equipments, this study aimed to establish equipment independent normal values for the true striatal binding of 123I-FP-CIT. Patients, methods: Specific striatal FP-CIT binding of 6 healthy volunteers and 26 patients with essential tremor were used to generate a reference range by applying an equipment specific resolution dependent factor to compensate for recovery effects. This factor has been determined previously by a series of standardized phantom measurements of an anthropomorphic basal ganglia phantom. Herewith, the resulting DAT binding values represent the expected true specific binding in the striatum. Results: On average, true specific striatal binding was 5.83 ± 0.96 in healthy controls, 5.25 ± 0.67 in patients with essential tremor and 5.36 ± 0.75 in the entire study cohort. Conclusion: These preliminary results may serve as a basis for the generation of a generally accepted equipment independent reference range for dopamine transporter imaging with 123I-FP-CIT. By a simple phantom measurement that can be accomplished within one day factors related to specific imaging equipment and processing can be corrected for, resulting in specific binding values which may enable a more standardized interpretation of dopamine transporter scans.

Zusammenfassung

Verlässliche Referenzwerte erleichtern sowohl die Interpretation als auch den Vergleich der Bildgebung des Dopamintransporter mittels SPECT. Ziel dieser Studie war die Etablierung von kameraunabhängigen Normwerten für die tatsächliche striatale 123I-FP-CIT-Bindung, da gemessene semiquantitative Referenzwerte nicht ohne weiteres zwischen verschiedenen Kamerasystemen verglichen werden können. Patienten, Methoden: Anhand von sechs gesunden Kontrollen und 26 Patienten mit essenziellem Tremor wurde durch Anwendung eines gerätespezifischen auflösungsabhängigen Korrekturfaktors für Recovery-Effekte ein Referenzbereich für die spezifische striatale FP-CIT-Bindung erstellt. Der Korrekturfaktor wurde vorher durch eine Reihe standardisierter Messungen an einem anthropomorphen Basalganglienphantom bestimmt. Die resultierenden Bindungswerte repräsentieren somit die zu erwartende tatsächliche striatale Binding des Radiopharmakons an den Dopamintransporter. Ergebnisse: Im Mittel betrug die tatsächliche spezifische striatale Bindung bei den gesunden Kontrollen 5,83 ± 0,96, bei Patienten mit essentiellem Tremor 5,25 ± 0,67 und im Gesamtkollektiv 5,36 ± 0,75. Schlussfolgerung: Diese ersten Ergebnisse können als Basis für einen allgemein gültigen, geräteunabhängigen Referenzbereich für die Dopamintransporterbildgebung mit 123I-FP-CIT dienen. Mit einer einfachen Phantommessung, die innerhalb eines Tages erfolgen kann, können geräte- und verarbeitungsspezifische Einflüsse korrigiert werden. Die so entstehenden spezifische Bindungswerte ermöglichen eine standardisierte Interpretation von SPECT-Untersuchungen des Dopamintransporters.

 
  • References

  • 1 Asenbaum S, Pirker W, Angelberger P. et al. 123I-beta-CIT and SPECT in essential tremor and Parkinson's disease. J Neural Transm 1998; 105: 1213-1228.
  • 2 Benamer TS, Patterson J, Grosset DG. et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of 123I-FP-CIT SPECT imaging: the 123I-FP-CIT study group. Mov Disord 2000; 15: 503-510.
  • 3 Fleming JS, Bolt L, Stratford JS. et al. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004; 49: N227-N234.
  • 4 Geworski L, Knoop BO, de Cabrejas ML. et al. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med 2000; 27: 161-169.
  • 5 Koch W, Hamann C, Welsch J. et al. Is iterative reconstruction an alternative to filtered back projection in routine processing of dopamine transporter SPECT studies?. J Nucl Med 2005; 46: 1804-1811.
  • 6 Koch W, Radau PE, Hamann C. et al. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med 2005; 46: 1109-1118.
  • 7 Koch W, Radau PE, Munzing W. et al. Cross- camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging 2006; 33: 495-502.
  • 8 Lavalaye J, Booij J, Reneman L. et al. Effect of age and gender on dopamine transporter imaging with 123I-FP-CIT SPET in healthy volunteers. Eur J Nucl Med 2000; 27: 867-869.
  • 9 Meyer PT, Sattler B, Lincke T. et al. Investigating dopaminergic neurotransmission with 123I-FP- CIT SPECT: Comparability of modern SPECT systems. J Nucl Med 2003; 44: 839-845.
  • 10 Morton RJ, Guy MJ, Clauss R. et al. Comparison of different methods ofDatSCAN quantification. Nucl Med Commun 2005; 26: 1139-1146.
  • 11 Morton RJ, Guy MJ, Marshall CA. et al. Variation of DaTSCAN quantification between different gamma camera types. Nucl Med Commun 2005; 26: 1131-1137.
  • 12 Müller-Gärtner HW, Links JM, Prince JL. et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992; 12: 571-583.
  • 13 Pirker W, Djamshidian S, Asenbaum S. et al. Progression of dopaminergic degeneration in Parkinson's disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov Disord 2002; 17: 45-53.
  • 14 Rajput AH, Rozdilsky B, Ang L. et al. Clinicopath- ologic observations in essential tremor: report of six cases. Neurology 1991; 41: 1422-1424.
  • 15 Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998; 39: 904-911.
  • 16 Seibyl JP, Marek K, Sheff K. et al. Iodine- 123-beta-CIT and iodine-123-FPCIT SPECT measurement ofdopamine transporters in healthy subjects and Parkinson's patients. J Nucl Med 1998; 39: 1500-1508.
  • 17 Soret M, Koulibaly PM, Darcourt J. et al. Partial volume effect correction in SPECT for striatal up-take measurements inpatients with neuro degenerative diseases: impact upon patient classification. Eur J Nucl Med Mol Imaging. 2006 DOI: 10.1007/s00259-00005-00003-00254.
  • 18 Tatsch K, Asenbaum S, Bartenstein P. et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using 123I-labelled dopamine D(2) transporter li- gands. Eur J Nucl Med Mol Imaging 2002; 29: BP30-BP35.
  • 19 Tissingh G, Booij J, Bergmans P. et al. Iodine-123-N-omega-fluoropropyl-2ß-carbo- methoxy-3ß-(4-iodophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson's disease. J Nucl Med 1998; 39: 1143-1148.