Thromb Haemost 2017; 117(10): 1908-1918
DOI: 10.1160/TH17-01-0007
Endothelium and Angiogenesis
Schattauer GmbH

Co-injection of mesenchymal stem cells with endothelial progenitor cells accelerates muscle recovery in hind limb ischemia through an endoglin-dependent mechanism

Elisa Rossi
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
,
Céline Goyard
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
3   AP-HP, European Georges Pompidou Hospital, Respiratory Medicine Department, Paris, France
,
Audrey Cras
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
4   AP-HP, Saint Louis Hospital, Cell Therapy Department, Paris, France
,
Blandine Dizier
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
,
Nour Bacha
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
,
Anna Lokajczyk
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
,
Coralie L. Guerin
5   National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
,
Nicolas Gendron
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
8   AP-HP, European Georges Pompidou Hospital, Hematology Department, Paris, France
,
Benjamin Planquette
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
3   AP-HP, European Georges Pompidou Hospital, Respiratory Medicine Department, Paris, France
,
Virginie Mignon
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
6   Cellular and Molecular Imaging Facility, Inserm US 25, CNRS UMS 3612, Faculty of Pharmacy of Paris, Paris Descartes University, Paris, France
,
Carmelo Bernabeu
7   Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
,
Olivier Sanchez
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
3   AP-HP, European Georges Pompidou Hospital, Respiratory Medicine Department, Paris, France
,
David M. Smadja
1   Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2   Inserm UMR-S1140, Paris, France
8   AP-HP, European Georges Pompidou Hospital, Hematology Department, Paris, France
› Author Affiliations
Further Information

Publication History

Received: 04 January 2017

Accepted after major revision: 21 June 2017

Publication Date:
10 November 2017 (online)

Summary

Endothelial colony-forming cells (ECFCs) are progenitor cells committed to endothelial lineages and have robust vasculogenic properties. Mesenchymal stem cells (MSCs) have been described to support ECFC-mediated angiogenic processes in various matrices. However, MSC-ECFC interactions in hind limb ischemia (HLI) are largely unknown. Here we examined whether co-administration of ECFCs and MSCs bolsters vasculogenic activity in nude mice with HLI. In addition, as we have previously shown that endoglin is a key adhesion molecule, we evaluated its involvement in ECFC/MSC interaction. Foot perfusion increased on day 7 after ECFC injection and was even better at 14 days. Co-administration of MSCs significantly increased vessel density and foot perfusion on day 7 but the differences were no longer significant at day 14. Analysis of mouse and human CD31, and in situ hybridization of the human ALU sequence, showed enhanced capillary density in ECFC+MSC mice. When ECFCs were silenced for endoglin, coinjection with MSCs led to lower vessel density and foot perfusion at both 7 and 14 days (p<0.001). Endoglin silencing in ECFCs did not affect MSC differentiation into perivascular cells or other mesenchymal lineages. Endoglin silencing markedly inhibited ECFC adhesion to MSCs. Thus, MSCs, when combined with ECFCs, accelerate muscle recovery in a mouse model of hind limb ischemia, through an endoglindependent mechanism.

Supplementary Material to this article is available online at www.thrombosis-online.com.

 
  • References

  • 1 Powell RJ. Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J Vasc Surg 2012; 56: 264-266.
  • 2 Silvestre JS, Smadja DM, Levy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93: 1743-1802.
  • 3 Tateishi-Yuyama E, Matsubara H, Murohara T. et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-435.
  • 4 Duong-Van-Huyen JP, Smadja DM, Bruneval P. et al. Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia. Mod Pathol 2008; 21: 837-846.
  • 5 Smadja DM, Bieche I, Silvestre JS. et al. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol 2008; 28: 2137-2143.
  • 6 Pignon B, Sevestre MA, Chatelain D. et al. Histological changes after implantation of autologous bone marrow mononuclear cells for chronic critical limb ischemia. Bone Marrow Transplant 2007; 39: 647-648.
  • 7 Yoder MC, Mead LE, Prater D. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801-1809.
  • 8 Smadja DM, Duong-van-Huyen JP, Dal Cortivo L. et al. Early endothelial progenitor cells in bone marrow are a biomarker of cell therapy success in patients with critical limb ischemia. Cytotherapy 2012; 14: 232-239.
  • 9 Melero-Martin JM, De Obaldia ME, Kang SY. et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 2008; 103: 194-202.
  • 10 Rossi E, Lopez-Novoa JM, Bernabeu C. Endoglin involvement in integrin-mediated cell adhesion as a putative pathogenic mechanism in hereditary hemorrhagic telangiectasia type 1 (HHT1). Front Genet 2015; 05: 457.
  • 11 Rossi E, Smadja DM, Boscolo E. et al. Endoglin regulates mural cell adhesion in the circulatory system. Cell Mol Life Sci 2016; 73: 1715-1739.
  • 12 Rossi E, Sanz-Rodriguez F, Eleno N. et al. Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 2013; 121: 403-415.
  • 13 Freida D, Lecourt S, Cras A. et al. Human bone marrow mesenchymal stem cells regulate biased DNA segregation in response to cell adhesion asymmetry. Cell Rep 2013; 05: 601-610.
  • 14 Dominici M, Le Blanc K, Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 08: 315-317.
  • 15 Cochain C, Rodero MP, Vilar J. et al. Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization. Cardiovasc Res 2010; 88: 186-195.
  • 16 HoWangYin KY, Loinard C, Bakker W. et al. HIF-prolyl hydroxylase 2 inhibition enhances the efficiency of mesenchymal stem cell-based therapies for the treatment of critical limb ischemia. Stem Cells 2014; 32: 231-243.
  • 17 Smadja DM, Guerin CL, Boscolo E. et al. alpha6-Integrin is required for the adhesion and vasculogenic potential of hemangioma stem cells. Stem Cells 2014; 32: 684-693.
  • 18 Swirski FK, Berger CR, Figueiredo JL. et al. A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS One 2007; 02: e1075.
  • 19 Willett CG, Schiller AL, Suit HD. et al. The histologic response of soft tissue sarcoma to radiation therapy. Cancer 1987; 60: 1500-1504.
  • 20 Zheng JK, Wang Y, Karandikar A. et al. Skeletal myogenesis by human embryonic stem cells. Cell Res 2006; 16: 713-722.
  • 21 Paoni NF, Peale F, Wang F. et al. Time course of skeletal muscle repair and gene expression following acute hind limb ischemia in mice. Physiol Genomics 2002; 11: 263-272.
  • 22 Heeschen C, Lehmann R, Honold J. et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004; 109: 1615-1622.
  • 23 Hill JM, Zalos G, Halcox JP. et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593-600.
  • 24 Smadja DM, Bieche I, Emmerich J. et al. PAR-1 activation has different effects on the angiogenic activity of endothelial progenitor cells derived from human adult and cord blood. J Thromb Haemost 2006; 04: 2729-2731.
  • 25 Smadja DM, Mauge L, Susen S. et al. Blood outgrowth endothelial cells from cord blood and peripheral blood: angiogenesis-related characteristics in vitro: a rebuttal. J Thromb Haemost 2009; 07: 504-506.
  • 26 Au P, Daheron LM, Duda DG. et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2008; 111: 1302-1305.
  • 27 Yoon CH, Hur J, Park KW. et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 2005; 112: 1618-1627.
  • 28 Lasala GP, Silva JA, Gardner PA. et al. Combination stem cell therapy for the treatment of severe limb ischemia: safety and efficacy analysis. Angiology 2010; 61: 551-556.
  • 29 Lasala GP, Silva JA, Minguell JJ. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J Thorac Cardiovasc Surg 2012; 144: 377-382.
  • 30 Lasala GP, Silva JA, Kusnick BA. et al. Combination stem cell therapy for the treatment of medically refractory coronary ischemia: a Phase I study. Cardiovasc Revasc Med 2011; 12: 29-34.
  • 31 Smadja DM, d’Audigier C, Guerin CL. et al. Angiogenic potential of BM MSCs derived from patients with critical leg ischemia. Bone Marrow Transplant 2012; 47: 997-1000.
  • 32 Melero-Martin JM, Khan ZA, Picard A. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109: 4761-4768.
  • 33 Au P, Tam J, Fukumura D. et al. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008; 111: 4551-4558.
  • 34 Smadja DM, Levy M, Huang L. et al. Treprostinil indirectly regulates endothelial colony forming cell angiogenic properties by increasing VEGF-A produced by mesenchymal stem cells. Thromb Haemost 2015; 114: 735-747.
  • 35 Lin RZ, Moreno-Luna R, Li D. et al. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc Natl Acad Sci USA 2014; 111: 10137-10142.
  • 36 Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14: 1398-1405.
  • 37 Shawber CJ, Kitajewski J. Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays 2004; 26: 225-234.
  • 38 Lopez-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol 2010; 299: H959-974.
  • 39 Lastres P, Letamendia A, Zhang H. et al. Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol 1996; 133: 1109-1121.
  • 40 Mahmoud M, Upton PD, Arthur HM. Angiogenesis regulation by TGFbeta signalling: clues from an inherited vascular disease. Biochem Soc Trans 2011; 39: 1659-1666.
  • 41 Shovlin CL. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 2010; 24: 203-219.
  • 42 Roques M, Durand C, Gautier R. et al. Endoglin expression level discriminates long-term hematopoietic from short-term clonogenic progenitor cells in the aorta. Haematologica 2012; 97: 975-979.
  • 43 Rossi E, Langa C, Gilsanz A. et al. Characterization of chicken endoglin, a member of the zona pellucida family of proteins, and its tissue expression. Gene 2012; 491: 31-39.
  • 44 Kuiper P, Hawinkels LJ, de Jonge-Muller ES. et al. Angiogenic markers endoglin and vascular endothelial growth factor in gastroenteropancreatic neuroendocrine tumors. World J Gastroenterol 2011; 17: 219-225.
  • 45 Ardelean DS, Yin M, Jerkic M. et al. Anti-VEGF therapy reduces intestinal inflammation in Endoglin heterozygous mice subjected to experimental colitis. Angiogenesis 2014; 17: 641-659.
  • 46 van Laake LW, van den Driesche S, Post S. et al. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 2006; 114: 2288-2297.
  • 47 Munoz R, Arias Y, Ferreras JM. et al. Transient injury-dependent up-regulation of CD105 and its specific targeting with an anti-vascular anti-mouse endoglinnigrin b immunotoxin. Med Chem 2012; 08: 996-1002.
  • 48 Dexheimer V, Gabler J, Bomans K. et al. Differential expression of TGF-beta superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation. Sci Rep 2016; 06: 36655.
  • 49 Evrard SM, d’Audigier C, Mauge L. et al. The profibrotic cytokine transforming growth factor-beta1 increases endothelial progenitor cell angiogenic properties. J Thromb Haemost 2012; 10: 670-679.