Thromb Haemost 2016; 116(01): 146-154
DOI: 10.1160/TH15-11-0871
Stroke, Systemic or Venous Thromboembolism
Schattauer GmbH

Antithrombin Dublin (p.Val30Glu): a relatively common variant with moderate thrombosis risk of causing transient antithrombin deficiency

José Navarro-Fernández
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
María Eugenia de la Morena-Barrio
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
José Padilla
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
Antonia Miñano
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
Nataliya Bohdan
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
Sonia Águila
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
Irene Martínez-Martínez
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
Teresa S. Sevivas
2   Serviço de Hematologia do Centro Hospitalar e Universitário de Coimbra, Portugal
,
Carmen de Cos
3   Hospital Universitario Puerta del Mar, Cádiz, Spain
,
Nuria Fernández-Mosteirín
4   Unidad de coagulación, Hospital Universitario Miguel Servet, Zaragoza, Spain
,
Pilar Llamas
5   Fundación Jiménez Díaz, Madrid, Spain
,
Susana Asenjo
6   Hospital Universitario Clínico San Carlos, Madrid, Spain
,
Pilar Medina
7   Instituto de Investigación Sanitaria La Fe, Valencia, Spain
,
Juan Carlos Souto
8   Institute of Biomedical Research of Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
,
Kim Overvad
9   Department of Cardiology, Center for Cardiovascular Research, Aalborg University Hospital, Aalborg, Denmark
10   Department of Public Health, Aarhus University, Aarhus, Denmark
,
Søren R. Kristensen
11   Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
,
Javier Corra
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
Vicente Vicente
1   Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
› Author Affiliations
Further Information

Publication History

Received: 13 November 2015

Accepted after major revision: 02 March 2016

Publication Date:
27 November 2017 (online)

Summary

The key haemostatic role of antithrombin and the risk of thrombosis associated with its deficiency support that the low incidence of antithrombin deficiency among patients with thrombosis might be explained by underestimation of this disorder. It was our aim to identify mutations in SERPINC1 causing transient antithrombin deficiency. SERPINC1 was sequenced in 214 cases with a positive test for antithrombin deficiency, including 67 with no deficiency in the sample delivered to our laboratory. The p.Val30Glu mutation (Antithrombin Dublin) was identified in five out of these 67 cases, as well as in three out of 127 cases with other SERPINC1 mutations. Genotyping in 1593 patients with venous thrombosis and 2592 controls from two populations, revealed a low prevalent polymorphism (0.3 %) that moderately increased the risk of venous thrombosis (OR: 2.9; 95 % CI: 1.07–8.09; p= 0.03) and identified one homozygous patient with an early thrombotic event. Carriers had normal anti-FXa activity, and plasma antithrombin was not sensitive to heat stress or proteolytic cleavage. Analysis of one sample with transient deficit revealed a type I deficiency, without aberrant or increased latent forms. The recombinant variant, which lacked the two amino-terminal residues, had reduced secretion from HEK-EBNA cells, formed hyperstable disulphidelinked polymers, and had negligible activity. In conclusion, p.Val30Glu by affecting the cleavage of antithrombin’s signal peptide, results in a mature protein lacking the N-terminal dipeptide with no functional consequences in normal conditions, but that increases the sensitivity to be folded intracellularly into polymers, facilitating transient antithrombin deficiency and the subsequent risk of thrombosis.

 
  • References

  • 1 Olds RJ, Lane DA, Mille B. et al. Antithrombin: the principal inhibitor of thrombin. Semin Thromb Haemost 1994; 20: 353-372.
  • 2 Ishiguro K, Kojima T, Kadomatsu K. et al. Complete antithrombin deficiency in mice results in embryonic lethality. J Clin Invest 2000; 106: 873-878.
  • 3 Liu Y, Kretz CA, Maeder ML. et al. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood 2014; 124: 142-150.
  • 4 Bucciarelli P, Passamonti SM, Biguzzi E. et al. Low borderline plasma levels of antithrombin, protein C and protein S are risk factors for venous thromboembolism. J Thromb Haemost 2012; 10: 1783-1791.
  • 5 Di Minno MN, Dentali F, Veglia F. et al. Antithrombin levels and the risk of a first episode of venous thromboembolism: a case-control study. Thromb Haemost 2013; 109: 167-169.
  • 6 Egeberg O. On the natural blood coagulation inhibitor system. Investigations of inhibitor factors based on antithrombin deficient blood. Thromb Diath Haemorrh 1965; 14: 473-489.
  • 7 Martinelli I, De Stefano V, Mannucci PM. Inherited risk factors for venous thromboembolism. Nat Rev Cardiol 2014; 11: 140-156.
  • 8 Mateo J, Oliver A, Borrell M. et al. Laboratory evaluation and clinical characteristics of 2,132 consecutive unselected patients with venous thromboembolism-results of the Spanish Multicentric Study on Thrombophilia (EMET-Study). Thromb Haemost 1997; 77: 444-451.
  • 9 Kristensen SR, Rasmussen B, Pedersen S. et al. Detecting antithrombin deficiency may be a difficult task--more than one test is necessary. J Thromb Haemost 2007; 05: 617-618.
  • 10 Ungerstedt JS, Schulman S, Egberg N. et al. Discrepancy between antithrombin activity methods revealed in Antithrombin Stockholm: do factor Xa-based methods overestimate antithrombin activity in some patients?. Blood 2002; 99: 2271-2272.
  • 11 Cooper PC, Coath F, Daly ME. et al. The phenotypic and genetic assessment of antithrombin deficiency. Int J Lab Hematol 2011; 33: 227-237.
  • 12 Javela K, Engelbarth S, Hiltunen L. et al. Great discrepancy in antithrombin activity measured using five commercially available functional assays. Thromb Res 2013; 132: 132-137.
  • 13 Moore GW, de Jager N, Cutler JA. Development of a novel, rapid assay for detection of heparin-binding defect antithrombin deficiencies: the heparin-antithrombin binding (HAB) ratio. Thromb Res 2015; 135: 161-166.
  • 14 Vinazzer H. Hereditary and acquired antithrombin deficiency. Semin Thromb Haemost 1999; 25: 257-263.
  • 15 Kottke-Marchant K, Duncan A. Antithrombin deficiency: issues in laboratory diagnosis. Arch Pathol Lab Med 2002; 126: 1326-1336.
  • 16 uszbek L, Bereczky Z, Kovacs B. et al. Antithrombin deficiency and its laboratory diagnosis. Clin Chem Lab Med 2010; 48 (Suppl. 01) S67-S78.
  • 17 Corral J, González-Conejero R, Soria JM. et al. A nonsense polymorphism in the protein Z-dependent protease inhibitor increases the risk for venous thrombosis. Blood 2006; 108: 177-183.
  • 18 Severinsen MT, Overvad K, Johnsen SP. et al. Genetic susceptibility, smoking, obesity and risk of venous thromboembolism. Br J Haematol 2010; 149: 273-279.
  • 19 de la Morena-Barrio ME, Antón AI, Martínez-Martínez I. et al. Regulatory regions of SERPINC1 gene: identification of the first mutation associated with antithrombin deficiency. Thromb Haemost 2012; 107: 430-437.
  • 20 Corral J, Huntington JA, González-Conejero R. et al. Mutations in the shutter region of antithrombin result in formation of disulfide-linked dimers and severe venous thrombosis. J Thromb Haemost 2004; 02: 931-939.
  • 21 Martínez-Martínez I, Ordóñez A, Navarro-Fernández J. et al. Antithrombin Murcia (K241E) causing antithrombin deficiency: a possible role for altered glycosylation. Haematologica 2010; 95: 1358-1365.
  • 22 Martínez-Martínez I, Johnson DJ, Yamasaki M. et al. Type II antithrombin deficiency caused by a large in-frame insertion: structural, functional and pathological relevance. J Thromb Haemost 2012; 10: 1859-1866.
  • 23 Daly M, O’Meara A, Hallinan FM. Identification and characterisation of a new antithrombin III familial variant (AT Dublin) with possible increased frequency in children with cancer. Br J Haematol 1987; 65: 457-462.
  • 24 Thein SL, Lane DA. Use of synthetic oligonucleotides in the characterisation of antithrombin III Northwick Park (393 CGT----TGT) and antithrombin III Glasgow (393 CGT----CAT). Blood 1988; 72: 1817-1821.
  • 25 Picard V, Bura A, Emmerich J. et al. Molecular bases of antithrombin deficiency in French families: identification of seven novel mutations in the antithrombin gene. Br J Haematol 2000; 110: 731-734.
  • 26 Pavlova A, El-Maarri O, Luxembourg B. et al. Detection of heterozygous large deletions in the antithrombin gene using multiplex polymerase chain reaction and denatured high performance liquid chromatography. Haematologica 2006; 91: 1264-1267.
  • 27 Daly M, Bruce D, Perry DJ. et al. Antithrombin Dublin (-3 Val----Glu): an N-terminal variant which has an aberrant signal peptidase cleavage site. FEBS Lett 1990; 273: 87-90.
  • 28 Simioni P, Tormene D, Tognin G. et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 2009; 361: 1671-1675.
  • 29 Miyawaki Y, Suzuki A, Fujita J. et al. Thrombosis from a prothrombin mutation conveying antithrombin resistance. N Engl J Med 2012; 366: 2390-2396.
  • 30 Millar DS, Lopez A, White D. et al. Screening for mutations in the antithrombin III (AT3) gene causing recurrent venous thrombosis by single strand conformation polymorphism analysis. Human Mutation 1993; 02: 324-326.
  • 31 Puurunen M, Salo P, Engelbarth S. et al. Type II antithrombin deficiency caused by a founder mutation Pro73Leu in the Finnish population: clinical picture. J Thromb Haemost 2013; 11: 1844-1849.
  • 32 Germain M, Chasman DI, de Haan H. et al. Meta-analysis of 65,734 individuals identifies TSPAN15 and SLC44A2 as two susceptibility loci for venous thromboembolism. Am J Hum Genet 2015; 96: 532-542.
  • 33 Luxembourg B, Delev D, Geisen C. et al. Molecular basis of antithrombin deficiency. Thromb Haemost 2011; 105: 635-646.
  • 34 Caspers M, Pavlova A, Driesen J. et al. Deficiencies of antithrombin, protein C and protein S - practical experience in genetic analysis of a large patient cohort. Thromb Haemost 2012; 108: 247-257.
  • 35 Corral J, Vicente V, Carrell RW. Thrombosis as a conformational disease. Haematologica 2005; 90: 238-246.
  • 36 Mushunje A, Evans G, Brennan SO. et al. Latent antithrombin and its detection, formation and turnover in the circulation. J Thromb Haemost 2004; 02: 2170-2177.
  • 37 Corral J, Rivera J, Guerrero JA. et al. Latent and polymeric antithrombin: clearance and potential thrombotic risk. Exp Biol Med 2007; 232: 219-226.
  • 38 Bruce D, Perry DJ, Borg JY. et al. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn-->Asp). J Clin Invest 1994; 94: 2265-2274.
  • 39 Beauchamp NJ, Pike RN, Daly M. et al. Antithrombins Wibble and Wobble (T85M/K): archetypal conformational diseases with in vivo latent-transition, thrombosis, and heparin activation. Blood 1998; 92: 2696-2706.
  • 40 Zhang Q, Buckle AM, Law RH. et al. The N terminus of the serpin, tengpin, functions to trap the metastable native state. EMBO Rep 2007; 08: 658-663.
  • 41 Corral J, Vicente V. Puzzling questions on antithrombin: Diagnostic limitations and real incidence in venous and arterial thrombosis. Thromb Res 2015; 135: 1047-1048.
  • 42 Fischer R, Sachs UJ, Heidinger KS. et al. Prevalence of hereditary antithrombin mutations is higher than estimated in patients with thrombotic events. Blood Coagul Fibrinolysis 2013; 24: 444-448.