Thromb Haemost 2015; 113(03): 441-451
DOI: 10.1160/TH14-10-0901
Theme Issue Article
Schattauer GmbH

Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes

Celia Fernandez-Sanz
1   Vall d’Hebron Institut de Recerca, Universitat Autònoma, Barcelona, Spain
,
Marisol Ruiz-Meana
1   Vall d’Hebron Institut de Recerca, Universitat Autònoma, Barcelona, Spain
,
José Castellano
1   Vall d’Hebron Institut de Recerca, Universitat Autònoma, Barcelona, Spain
,
Elisabet Miro-Casas
1   Vall d’Hebron Institut de Recerca, Universitat Autònoma, Barcelona, Spain
,
Estefanía Nuñez
2   Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
,
Javier Inserte
1   Vall d’Hebron Institut de Recerca, Universitat Autònoma, Barcelona, Spain
,
Jesús Vázquez
2   Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
,
David Garcia-Dorado
1   Vall d’Hebron Institut de Recerca, Universitat Autònoma, Barcelona, Spain
› Author Affiliations
Financial support:Supported by the Spanish Ministry of Science (SAF2008–03067, BIO2012–37926 and ProteoRed-PT13/0001/0017) and the Instituto de Salud Carlos III (RETICS-RECAVA RD12/0042/0021, RD12/0042/0056 and FIS-PI12/00788). The CNIC is supported by the Spanish Ministry of Economy and Competitiveness and the Pro-CNIC Foundation. Celia Fernandez-Sanz is a predoctoral student at International Research Training Group PROMISE (”Protecting the Heart from Ischemia“) Giessen – Barcelona (DFG IRTG – 1566).
Further Information

Publication History

Received: 30 October 2014

Accepted after minor revision: 15 January 2015

Publication Date:
29 November 2017 (online)

Summary

Aging is a major determinant of the incidence and severity of ischaemic heart disease. Preclinical information suggests the existence of intrinsic cellular alterations that contribute to ischaemic susceptibility in senescent myocardium, by mechanisms not well established. We investigated the role of altered mitochondrial function in the adverse effect of aging. Isolated perfused hearts from old mice (> 20 months) displayed increased ischaemia-reperfusion injury as compared to hearts from adult mice (6 months) despite delayed onset of ischaemic rigor contracture. In cardiomyocytes from aging hearts there was a more rapid decline of mitochondrial membrane potential (ΔΨm) as compared to young ones, but ischaemic rigor shortening was also delayed. Transient recovery of ΔΨm observed during ischaemia, secondary to the reversal of mitochondrial FoF1 ATP synthase to ATPase mode, was markedly reduced in aging cardiomyocytes. Proteomic analysis demonstrated increased oxidation of different subunits of ATP synthase. Altered bionergetics in aging cells was associated with reduced mitochondrial calcium uptake and more severe cytosolic calcium overload during ischaemia-reperfusion. Despite attenuated ROS burst and mitochondrial calcium overload, mitochondrial permeability transition pore (mPTP) opening and cell death was increased in reperfused aged cells. In vitro studies demonstrated a significantly reduced calcium retention capacity in interfibrillar mitochondria from aging hearts. Our results identify altered FoF1 ATP synthase and increased sensitivity of mitochondria to undergo mPTP opening as important determinants of the reduced tolerance to ischaemia-reperfusion in aging hearts. Because ATP synthase has been proposed to conform mPTP, it is tempting to hypothesise that oxidation of ATP synthase underlie both phenomena.

 
  • References

  • 1 Moran AE, Forouzanfar MH, Roth GA. et al. The global burden of ischaemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation 2014; 129: 1493-1501.
  • 2 Lloyd-Jones D, Adams RJ, Brown TM. et al. Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010; 121: 948-954.
  • 3 Burch JB, Augustine AD, Frieden LA. et al. Advances in geroscience: impact on healthspan and chronic disease. J Gerontol A Biol Sci Med Sci 2014; 69 (Suppl. 01) S1-S3.
  • 4 Shih H, Lee B, Lee RJ. et al. The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 2011; 57: 9-17.
  • 5 Ekerstad N, Swahn E, Janzon M. et al. Frailty is independently associated with short-term outcomes for elderly patients with non-ST-segment elevation myocardial infarction. Circulation 2011; 124: 2397-2404.
  • 6 Willems L, Zatta A, Holmgren K. et al. Age-related changes in ischaemic tolerance in male and female mouse hearts. J Mol Cell Cardiol 2005; 38: 245-256.
  • 7 Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 2012; 8: 143-164.
  • 8 Chen Q, Moghaddas S, Hoppel CL. et al. Ischaemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 2008; 294: C460-C466.
  • 9 Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120: 483-495.
  • 10 Lesnefsky EJ, Hoppel CL. Oxidative phosphorylation and aging. Ageing Res Rev 2006; 5: 402-433.
  • 11 Lesnefsky EJ, He D, Moghaddas S. et al. Reversal of mitochondrial defects before ischaemia protects the aged heart. FASEB J 2006; 20: 1543-1545.
  • 12 Sadek HA, Nulton-Persson AC, Szweda PA. et al. Cardiac ischaemia/reperfu-sion, aging, and redox-dependent alterations in mitochondrial function. Arch Biochem Biophys 2003; 420: 201-208.
  • 13 Fannin SW, Lesnefsky EJ, Slabe TJ. et al. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys 1999; 372: 399-407.
  • 14 Lesnefsky EJ, Gudz TI, Moghaddas S. et al. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J Mol Cell Cardiol 2001; 33: 37-47.
  • 15 Paradies G, Petrosillo G, Pistolese M. et al. Decrease in mitochondrial complex I activity in ischaemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 2004; 94: 53-59.
  • 16 Cooper LL, Li W, Lu Y. et al. Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts. J Physiol 2013; 591: 5895-5911.
  • 17 Ruiz-Meana M, Garcia-Dorado D, Miro-Casas E. et al. Mitochondrial Ca2+ uptake during simulated ischaemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc Res 2006; 71: 715-724.
  • 18 Petronilli V, Miotto G, Canton M. et al. Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 1999; 76: 725-734.
  • 19 Bonzon-Kulichenko E, Perez-Hernandez D, Nunez E. et al. A robust method for quantitative high-throughput analysis of proteomes by 18O labeling. Mol Cell Proteomics 2011; 10: M110.
  • 20 Martinez-Acedo P, Nunez E, Gomez FJ. et al. A novel strategy for global analysis of the dynamic thiol redox proteome. Mol Cell Proteomics 2012; 11: 800-813.
  • 21 Jorge I, Navarro P, Martinez-Acedo P. et al. Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells. Mol Cell Proteomics 2009; 8: 1130-1149.
  • 22 Sack MN. Mitochondrial depolarisation and the role of uncoupling proteins in ischaemia tolerance. Cardiovasc Res 2006; 72: 210-219.
  • 23 Di Lisa F, Blank PS, Colonna R. et al. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 1995; 486: 1-13.
  • 24 Allshire A, Piper HM, Cuthbertson KS. et al. Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J 1987; 244: 381-385.
  • 25 Grover GJ, Atwal KS, Sleph PG. et al. Excessive ATP hydrolysis in ischaemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. Am J Physiol Heart Circ Physiol 2004; 287: H1747-H1755.
  • 26 Ruiz-Meana M, Garcia-Dorado D, Lane S. et al. Persistence of gap junction communication during myocardial ischaemia. Am J Physiol Heart Circ Physiol 2001; 280: H2563-H2571.
  • 27 Fernandez-Sanz C, Ruiz-Meana M, Miro-Casas E. et al. Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis 2014; 5: e1573.
  • 28 Wang SB, Murray CI, Chung HS, Van Eyk JE. Redox regulation of mitochondrial ATP synthase. Trends Cardiovasc Med 2013; 23: 14-18.
  • 29 Rizzuto R, Bernardi P, Pozzan T. Mitochondria as all-round players of the calcium game. J Physiol 2000; 529: 37-47.
  • 30 Tran K, Smith NP, Loiselle DS. et al. A thermodynamic model of the cardiac sar-coplasmic/endoplasmic Ca(2+) (SERCA) pump. Biophys J 2009; 96: 2029-2042.
  • 31 Mazurek SR, Bovo E, Zima AV. Regulation of sarcoplasmic reticulum Ca(2+) release by cytosolic glutathione in rabbit ventricular myocytes. Free Radic Biol Med 2014; 68: 159-167.
  • 32 Fauconnier J, Meli AC, Thireau J. et al. Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischaemia-reperfusion. Proc Natl Acad Sci USA 2011; 108: 13258-13263.
  • 33 Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86: 369-408.
  • 34 Rizzuto R, Pinton P, Carrington W. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998; 280: 1763-1766.
  • 35 Ruiz-Meana M, Fernandez-Sanz C, Garcia-Dorado D. The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc Res 2010; 88: 30-39.
  • 36 Saotome M, Katoh H, Satoh H. et al. Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2005; 288: H1820-H1828.
  • 37 Drago I, De Stefani D, Rizzuto R. et al. Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci USA 2012; 109: 12986-12991.
  • 38 Herzig S, Maundrell K, Martinou JC. Life without the mitochondrial calcium uniporter. Nat Cell Biol 2013; 15: 1398-1400.
  • 39 O’Brien JD, Ferguson JH, Howlett SE. Effects of ischaemia and reperfusion on isolated ventricular myocytes from young adult and aged Fischer 344 rat hearts. Am J Physiol Heart Circ Physiol 2008; 294: H2174-H2183.
  • 40 Ataka K, Chen D, Levitsky S. et al. Effect of aging on intracellular Ca2+, pHi, and contractility during ischaemia and reperfusion. Circulation 1992; 86 (05) (Suppl. 01) II371-II376.
  • 41 Cain BS, Meldrum DR, Joo KS. et al. Human SERCA2a levels correlate inversely with age in senescent human myocardium. J Am Coll Cardiol 1998; 32: 458-467.
  • 42 Fowler MR, Naz JR, Graham MD. et al. Age and hypertrophy alter the contribution of sarcoplasmic reticulum and Na+/Ca2+ exchange to Ca2+ removal in rat left ventricular myocytes. J Mol Cell Cardiol 2007; 42: 582-589.
  • 43 Babusikova E, Lehotsky J, Dobrota D. et al. Age-associated changes in Ca(2+)-ATPase and oxidative damage in sarcoplasmic reticulum of rat heart. Physiol Res 2012; 61: 453-460.
  • 44 Xu A, Narayanan N. Effects of aging on sarcoplasmic reticulum Ca2+-cycling proteins and their phosphorylation in rat myocardium. Am J Physiol 1998; 275: H2087-H2094.
  • 45 Hofer T, Servais S, Seo AY. et al. Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: effects of aging and lifelong calorie restriction. Mech Ageing Dev 2009; 130: 297-307.
  • 46 Petrosillo G, Moro N, Paradies V. et al. Increased susceptibility to Ca(2+)-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: effect of melatonin. J Pineal Res 2010; 48: 340-346.
  • 47 Pepe S. Mitochondrial function in ischaemia and reperfusion of the ageing heart. Clin Exp Pharmacol Physiol 2000; 27: 745-750.
  • 48 Zhu J, Rebecchi MJ, Tan M. et al. Age-associated differences in activation of Akt/GSK-3beta signalling pathways and inhibition of mitochondrial permeability transition pore opening in the rat heart. J Gerontol A Biol Sci Med Sci 2010; 65: 611-619.
  • 49 Hafner AV, Dai J, Gomes AP. et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2010; 2: 914-923.
  • 50 Kokoszka JE, Waymire KG, Levy SE. et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004; 427: 461-465.
  • 51 Baines CP, Kaiser RA, Sheiko T. et al. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 2007; 9: 550-555.
  • 52 Antoniel M, Giorgio V, Fogolari F. et al. The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology. Int J Mol Sci 2014; 15: 7513-7536.
  • 53 Choudhary C, Kumar C, Gnad F. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325: 834-840.
  • 54 Rardin MJ, Newman JC, Held JM. et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 2013; 110: 6601-6606.
  • 55 Ahn BH, Kim HS, Song S. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 2008; 105: 14447-14452.
  • 56 Porter GA, Urciuoli WR, Brookes PS. et al. SIRT3 deficiency exacerbates ischaemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 2014; 306: H1602-H1609.
  • 57 Qiu X, Brown K, Hirschey MD. et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010; 12: 662-667.
  • 58 Choudhary C, Weinert BT, Nishida Y. et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 2014; 15: 536-550.
  • 59 Boengler K, Schulz R, Heusch G. Loss of cardioprotection with ageing. Cardiovasc Res 2009; 83: 247-261.
  • 60 Tani M, Honma Y, Hasegawa H. et al. Direct activation of mitochondrial K(ATP) channels mimics preconditioning but protein kinase C activation is less effective in middle-aged rat hearts. Cardiovasc Res 2001; 49: 56-68.
  • 61 Boengler K, Buechert A, Heinen Y. et al. Cardioprotection by ischaemic post-conditioning is lost in aged and STAT3-deficient mice. Circ Res 2008; 102: 131-135