Thromb Haemost 2015; 113(03): 494-504
DOI: 10.1160/TH14-07-0603
Theme Issue Article
Schattauer GmbH

Selenoproteins and cardiovascular stress

Aaron H. Rose
1   Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
,
Peter R. Hoffmann
1   Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
› Author Affiliations
Further Information

Publication History

Received: 14 July 2014

Accepted after minor revision: 18 September 2014

Publication Date:
17 November 2017 (online)

Summary

Dietary selenium (Se) is an essential micronutrient that exerts its biological effects through its incorporation into selenoproteins. This family of proteins contains several antioxidant enzymes such as the glutathione peroxidases, redox-regulating enzymes such as thioredoxin reductases, a methionine sulfoxide reductase, and others. In this review, we summarise the current understanding of the roles these seleno proteins play in protecting the cardiovascular system from different types of stress including ischaemia-reperfusion, homocysteine dysregulation, myocardial hypertrophy, doxirubicin toxicity, Keshan disease, and others.

 
  • References

  • 1 Fairweather-Tait SJ. et al. Selenium in human health and disease. Antioxid Redox Signal 2011; 14: 1337-1383.
  • 2 Rayman MP. Selenium and human health. Lancet 2012; 379: 1256-1268.
  • 3 U. S. Department of Agriculture ARS. USDA National Nutrient Database for Standard Reference, Release 16. Nutrient Data Laboratory Home Page. Available at: http://www.nal.usda.gov/fnic/foodcomp .
  • 4 Longnecker MP. et al. Selenium in diet, blood, and toenails in relation to human health in a seleniferous area. Am J Clin Nutr 1991; 53: 1288-1294.
  • 5 Metes-Kosik N. et al. Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance. Mol Nutr Food Res 2012; 56: 1812-1824.
  • 6 Stranges S. et al. Selenium status and cardiometabolic health: state of the evidence. Nutrition, metabolism, and cardiovascular diseases: NMCD 2010; 20: 754-760.
  • 7 Joseph J. Selenium and cardiometabolic health: inconclusive yet intriguing evidence. Am J Med Sci 2013; 346: 216-220.
  • 8 Rees K. et al. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Datab Syst Rev 2013; 1: CD009671.
  • 9 Hoffmann PR, Berry MJ. Selenoprotein synthesis: a unique translational mechanism used by a diverse family of proteins. Thyroid 2005; 15: 769-775.
  • 10 Seeher S. et al. Post-transcriptional control of selenoprotein biosynthesis. Curr Prot Pept Sci 2012; 13: 337-346.
  • 11 Squires JE, Berry MJ. Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 2008; 60: 232-235.
  • 12 Schmidt RL, Simonovic M. Synthesis and decoding of selenocysteine and human health. Croat Med J 2012; 53: 535-550.
  • 13 Kryukov GV. et al. Characterisation of mammalian selenoproteomes. Science 2003; 300: 1439-1443.
  • 14 Reeves MA, Hoffmann PR. The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 2009; 66: 2457-2478.
  • 15 Rotruck JT. et al. Selenium: biochemical role as a component of glutathione per-oxidase. Science 1973; 179: 588-590.
  • 16 Flohe L. et al. Glutathione peroxidase: a selenoenzyme. FEBS Lett 1973; 32: 132-134.
  • 17 Kim HY, Gladyshev VN. Methionine sulfoxide reduction in mammals: characterisation of methionine-R-sulfoxide reductases. Mol Biol Cell 2004; 15: 1055-1064.
  • 18 Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298-300.
  • 19 Petropoulos I, Friguet B. Maintenance of proteins and aging: the role of oxidized protein repair. Free Rad Res 2006; 40: 1269-1276.
  • 20 Kasaikina MV. et al. Reduced utilisation of selenium by naked mole rats due to a specific defect in GPx1 expression. J Biol Chem 2011; 286: 17005-1714.
  • 21 Ran Q. et al. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol Series A Biol Sci Med Sci 2007; 62: 932-942.
  • 22 Muller FL. et al. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43: 477-503.
  • 23 Dikiy A. et al. SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 2007; 46: 6871-6882.
  • 24 Panee J. et al. Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem 2007; 282: 23759-23765.
  • 25 Novoselov SV. et al. Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J Biol Chem 2007; 282: 11960-11968.
  • 26 Grumolato L. et al. Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilisation and neuroendocrine secretion. FASEB J 2008; 22: 1756-1768.
  • 27 Prevost G. et al. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human beta-cells and its targeted inactivation impairs glucose tolerance. Endocrinology 2013; 154: 3796-3806.
  • 28 Korotkov KV. et al. Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 2001; 276: 15330-15336.
  • 29 Ferguson AD. et al. NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J Biol Chem 2006; 281: 3536-3543.
  • 30 Lu C. et al. Identification and characterisation of selenoprotein K: an antioxidant in cardiomyocytes. FEBS Lett 2006; 580: 5189-5197.
  • 31 Shchedrina VA. et al. Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J Biol Chem 2011; 286: 42937-42948.
  • 32 Verma S. et al. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol 2011; 186: 2127-2137.
  • 33 Huang Z. et al. Stimulation of unprimed macrophages with immune complexes triggers a low output of nitric oxide by calcium-dependent neuronal nitric-oxide synthase. J Biol Chem 2012; 287: 4492-4502.
  • 34 Meiler S. et al. Selenoprotein K is required for palmitoylation of CD36 in macro-phages: implications in foam cell formation and atherogenesis. J Leukocyte Biol 2013; 93: 771-780.
  • 35 Bosl MR. et al. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci USA 1997; 94: 5531-5534.
  • 36 Conrad M. Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione perox-idase 4. Biochim Biophys Acta 2009; 1790: 1575-1585.
  • 37 Yant LJ. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 2003; 34: 496-502.
  • 38 Jakupoglu C. et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 2005; 25: 1980-1988.
  • 39 Conrad M. et al. Essential role for mitochondrial thioredoxin reductase in he-matopoiesis, heart development, and heart function. Mol Cell Biol 2004; 24: 9414-9423.
  • 40 Prasad R. et al. Thioredoxin Reductase 2 (TXNRD2) Mutation Associated With Familial Glucocorticoid Deficiency (FGD). J Clin Endocrinol Metabol 2014; 99: E1556-1563.
  • 41 Cheng WH. et al. Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J Nutr 1997; 127: 1445-1450.
  • 42 Esworthy RS. et al. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am J Physiol Gastrointest Liver Physiol 2001; 281: G848-855.
  • 43 Schneider MJ. et al. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 2006; 147: 580-589.
  • 44 Schneider MJ. et al. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 2001; 15: 2137-2148.
  • 45 Hill KE. et al. Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 2003; 278: 13640-13646.
  • 46 Schomburg L. et al. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J 2003; 370: 397-402.
  • 47 Fomenko DE. et al. MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form. J Biol Chem 2009; 284: 5986-5993.
  • 48 Pitts MW. et al. Deletion of selenoprotein M leads to obesity without cognitive deficits. J Biol Chem 2013; 288: 26121-26134.
  • 49 Rederstorff M. et al. Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: a mammalian model for SEPN1-related myopathy. PloS one 2011; 6: e23094.
  • 50 Kasaikina MV. et al. Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J Biol Chem 2011; 286: 33203-33212.
  • 51 Hoffmann PR. et al. The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res 2007; 35: 3963-3973.
  • 52 Kelly VP. et al. The distal sequence element of the selenocysteine tRNA gene is a tissue-dependent enhancer essential for mouse embryogenesis. Mol Cell Biol 2005; 25: 3658-3669.
  • 53 Hernandez A, St Germain DL. Thyroid hormone deiodinases: physiology and clinical disorders. Curr Opin Pediatr 2003; 15: 416-420.
  • 54 Combs Jr. GF. et al. Determinants of selenium status in healthy adults. Nutrition J 2011; 10: 75.
  • 55 Tanguy S. et al. Impact of dietary selenium intake on cardiac health: experimental approaches and human studies. Mol Nutr Food Res 2012; 56: 1106-1121.
  • 56 Joseph J, Loscalzo J. Selenistasis: epistatic effects of selenium on cardiovascular phenotype. Nutrients 2013; 5: 340-358.
  • 57 Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta 2013; 1830: 3289-3303.
  • 58 Forgione MA. et al. Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation 2002; 106: 1154-1158.
  • 59 Das DK. et al. Preconditioning potentiates molecular signalling for myocardial adaptation to ischaemia. Ann NY Acad Sci 1996; 793: 191-209.
  • 60 Yoshida T. et al. Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischaemia reperfusion injury. J Mol Cell Cardiol 1996; 28: 1759-1767.
  • 61 Yoshida T. et al. Glutathione peroxidase knockout mice are susceptible to myocardial ischaemia reperfusion injury. Circulation 1997; 96 (09) Suppl II-216-20.
  • 62 Maulik N. et al. Regulation of cardiomyocyte apoptosis in ischaemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 1999; 196: 13-21.
  • 63 Venardos K. et al. Effects of dietary selenium on glutathione peroxidase and thioredoxin reductase activity and recovery from cardiac ischaemia-reperfusion. J Trace Elem Med Biol 2004; 18: 81-88.
  • 64 Venardos K. et al. Effects of dietary selenium on post-ischaemic expression of antioxidant mRNA. Mol Cell Biochem 2005; 270: 131-138.
  • 65 Seshadri N, Robinson K. Homocysteine and coronary risk. Curr Cardiol Rep 1999; 1: 91-98.
  • 66 Upchurch Jr. GR. et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997; 272: 17012-17017.
  • 67 Zhang X. et al. Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 2000; 279: F671-678.
  • 68 Starkebaum G, Harlan JM. Endothelial cell injury due to copper-catalysed hydrogen peroxide generation from homocysteine. J Clin Invest 1986; 77: 1370-1376.
  • 69 Dayal S. et al. Deficiency of glutathione peroxidase-1 sensitizes hyperhomocysteinemic mice to endothelial dysfunction. Arterioscler Thromb Vasc Biol 2002; 22: 1996-2002.
  • 70 Weiss N. et al. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci USA 2001; 98: 12503-12508.
  • 71 Weiss Sachdev S, Sunde RA. Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver. Biochem J 2001; 357: 851-858.
  • 72 Thomson CD. Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 2004; 58: 391-402.
  • 73 Handy DE. et al. Homocysteine down-regulates cellular glutathione peroxidase (GPx1) by decreasing translation. J Biol Chem 2005; 280: 15518-15525.
  • 74 Danesi F. et al. Counteraction of adriamycin-induced oxidative damage in rat heart by selenium dietary supplementation. J Agric Food Chem 2006; 54: 1203-1208.
  • 75 Quiles JL. et al. Antioxidant nutrients and adriamycin toxicity. Toxicology 2002; 180: 79-95.
  • 76 Xiong Y. et al. Attenuation of doxorubicin-induced contractile and mitochondrial dysfunction in mouse heart by cellular glutathione peroxidase. Free Radic Biol Med 2006; 41: 46-55.
  • 77 Gao J. et al. Glutathione peroxidase 1-deficient mice are more susceptible to do-xorubicin-inducedcardiotoxicity. Biochim Biophys Acta 2008; 1783: 2020-2029.
  • 78 Zhou S. et al. The Role of Nrf2-Mediated Pathway in Cardiac Remodelling and Heart Failure. Oxidat Med Cell Longevity 2014; 2014: 260429.
  • 79 Kimura W, Muralidhar S, Canseco DC. et al. Redox signalling in cardiac renewal. Antioxid Redox Signal 2014; 21: 1660-1673.
  • 80 Reinke EN. et al. Translational regulation of GPx-1 and GPx-4 by the mTOR pathway. PloS one 2014; 9: e93472.
  • 81 Ramprasath T, Selvam GS. Potential impact of genetic variants in Nrf2 regulated antioxidant genes and risk prediction of diabetes and associated cardiac complications. Curr Med Chem 2013; 20: 4680-4693.
  • 82 Dreger H. et al. Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc Res 2009; 83: 354-361.
  • 83 Hashmi S, Al-Salam S. Hypoxia-inducible factor-1 alpha in the heart: a double agent?. Cardiol Rev 2012; 20: 268-273.
  • 84 Philip B. et al. HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression. Carcinogenesis 2013; 34: 1699-1707.
  • 85 Kimura W, Sadek HA. The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc Diagn Ther 2012; 2: 278-289.
  • 86 Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012; 48: 158-167.
  • 87 Bell EL. et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signalling via reactive oxygen species production. J Cell Biol 2007; 177: 1029-1036.
  • 88 Moos PJ. et al. Electrophilic prostaglandins and lipid aldehydes repress redox-sensitive transcription factors p53 and hypoxia-inducible factor by impairing the selenoprotein thioredoxin reductase. J Biol Chem 2003; 278: 745-750.
  • 89 Wheaton WW, Chandel NS. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol 2011; 300: C385-393.
  • 90 Scortegagna M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nature Gen 2003; 35: 331-340.
  • 91 Sciarretta S. et al. Mammalian target of rapamycin signalling in cardiac physiology and disease. Circ Res 2014; 114: 549-564.
  • 92 Ayaz M, Turan B. Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 2006; 290: H1071-1080.
  • 93 McClung JP. et al. Development of insulin resistance and obesity in mice overex-pressing cellular glutathione peroxidase. Proc Natl Acad Sci USA 2004; 101: 8852-8857.
  • 94 Fujita A. et al. Increased gene expression of antioxidant enzymes in KKAy diabetic mice but not in STZ diabetic mice. Diabetes Res Clin Pract 2005; 69: 113-119.
  • 95 Iwata K. et al. The activity of aldose reductase is elevated in diabetic mouse heart. J Pharmacol Sci 2007; 103: 408-416.
  • 96 Li GS. et al. Keshan disease: an endemic cardiomyopathy in China. Hum Pathol 1985; 16: 602-609.
  • 97 Xu GL. et al. Further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed Environ Sci 1997; 10: 316-326.
  • 98 Su C. et al. Preliminary resluts of viral etiology of Keshan disease. Chin Med J 1979; 59: 466-472.
  • 99 Li Y. et al. Detection of enteroviral RNA in parafin-embedded myocardial tissue from patients with Kehan disease by nested PCR. Chung Hua I Hsueh Tsa Chih 1995; 75: 344-345.
  • 100 Peng T. et al. Characterisation of enterovirus isolates from patients with heart muscle disease in a selenium-deficient area of China. J Clin Microbiol 2000; 38: 3538-3543.
  • 101 Beck MA. et al. Benign human enterovirus becomes virulent in selenium-deficient mice. J Med Virol 1994; 43: 166-170.
  • 102 Beck MA. et al. Glutathione peroxidase protects mice from viral-induced myocarditis. Faseb J 1998; 12: 1143-1149.
  • 103 Pei J. et al. Oxidative stress is involved in the pathogenesis of Keshan disease (an endemic dilated cardiomyopathy) in China. Oxidat Med Cell Longev 2013; 2013: 474203.
  • 104 Freedman JE. et al. Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J Clin Invest 1995; 96: 394-400.
  • 105 Freedman JE. et al. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 1996; 97: 979-987.
  • 106 Kenet G. et al. Plasma glutathione peroxidase deficiency and platelet insensitiv-ity to nitric oxide in children with familial stroke. Arterioscler Thromb Vasc Biol 1999; 19: 2017-2023.
  • 107 Bierl C. et al. Determinants of human plasma glutathione peroxidase (GPx-3) expression. J Biol Chem 2004; 279: 26839-26845.
  • 108 Voetsch B. et al. Promoter polymorphisms in the plasma glutathione perox-idase (GPx-3) gene: a novel risk factor for arterial ischaemic stroke among young adults and children. Stroke 2007; 38: 41-49.
  • 109 Voetsch B. et al. Role of promoter polymorphisms in the plasma glutathione peroxidase (GPx-3) gene as a risk factor for cerebral venous thrombosis. Stroke 2008; 39: 303-307.
  • 110 Grond-Ginsbach C, Lichy C, Padovani A. et al. GPx-3 gene promoter variation and the risk of arterial ischaemic stroke. Stroke 2007; 38: e23 author reply e24.
  • 111 Iwata K. et al. Increased gene expression of glutathione peroxidase-3 in diabetic mouse heart. Biol Pharm Bull 2006; 29: 1042-1045.
  • 112 Brigelius-Flohe R. et al. Selenium-dependent enzymes in endothelial cell function. Antioxid Redox Signal 2003; 5: 205-215.
  • 113 Hoffmann FW. et al. Specific antioxidant selenoproteins are induced in the heart during hypertrophy. Arch Biochem Biophys 2011; 512: 38-44.
  • 114 Hollander JM. et al. Overexpression of PHGPx and HSP60/10 protects against ischaemia/reoxygenation injury. Free Radic Biol Med 2003; 35: 742-751.
  • 115 Banning A. et al. Inhibition of basal and interleukin-1-induced VCAM-1 expression by phospholipid hydroperoxide glutathione peroxidase and 15-lip-oxygenase in rabbit aortic smooth muscle cells. Free Radic Biol Med 2004; 36: 135-144.
  • 116 Pepper MP. et al. Impacts of dietary selenium deficiency on metabolic phenotypes of diet-restricted GPX1-overexpressing mice. Antioxid Redox Signal 2011; 14: 383-390.
  • 117 Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000; 267: 6102-6109.
  • 118 Maulik N, Das DK. Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta 2008; 1780: 1368-1382.
  • 119 Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Rel Areas Mol Biol 1990; 63: 69-172.
  • 120 Gasdaska PY. et al. Cloning and sequencing of a human thioredoxin reductase. FEBS Lett 1995; 373: 5-9.
  • 121 Gasdaska PY. et al. Cloning, sequencing and functional expression of a novel human thioredoxin reductase. FEBS Lett 1999; 442: 105-111.
  • 122 Sun QA. et al. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci USA 2001; 98: 3673-3678.
  • 123 Berndt C. et al. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 2007; 292: H1227-1236.
  • 124 World CJ. et al. Thioredoxin in the cardiovascular system. J Mol Med 2006; 84: 997-1003.
  • 125 Ago T, Sadoshima J. Thioredoxin and ventricular remodelling. J Mol Cell Cardiol 2006; 41: 762-773.
  • 126 Yamamoto M. et al. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 2003; 112: 1395-1406.
  • 127 Andersson M. et al. NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK-lysin cytotoxicity. J Biol Chem 1996; 271: 10116-10120.
  • 128 Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001; 31: 1287-1312.
  • 129 Xia L. et al. The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 2003; 278: 2141-2146.
  • 130 Pimentel DR. et al. Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent Ras S-glutathiolation. J Mol Cell Cardiol 2006; 41: 613-622.
  • 131 Amin JK. et al. Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 2001; 33: 131-139.
  • 132 Tanaka K. et al. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol 2001; 37: 676-685.
  • 133 Nakamura K. et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998; 98: 794-799.
  • 134 Remondino A. et al. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 2003; 92: 136-138.
  • 135 Wang L, Proud CG. Ras/Erk signalling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes. Circ Res 2002; 91: 821-829.
  • 136 Kuster GM. et al. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 2005; 111: 1192-1198.
  • 137 Kryukov GV. et al. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci USA 2002; 99: 4245-4250.
  • 138 Picot CR. et al. Alterations in mitochondrial and cytosolic methionine sulfoxide reductase activity during cardiac ischaemia and reperfusion. Exp Gerontol 2006; 41: 663-667.
  • 139 Lee BC. et al. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol Cell 2013; 51: 397-404.
  • 140 Erickson JR. et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 2008; 133: 462-474.
  • 141 Purohit A. et al. Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation 2013; 128: 1748-1757.
  • 142 Luo M. et al. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest 2013; 123: 1262-1274.
  • 143 He BJ. et al. Oxidation of CaMKII determines the cardiotoxic effects of aldoste-rone. Nature Med 2011; 17: 1610-1618.
  • 144 Zhang R. et al. Calmodulin kinase II inhibition protects against structural heart disease. Nature Med 2005; 11: 409-417.
  • 145 Swaminathan PD. et al. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 2012; 110: 1661-1677.
  • 146 Cox AJ. et al. Polymorphisms in the Selenoprotein S gene and subclinical cardiovascular disease in the Diabetes Heart Study. Acta diabetologica 2013; 50: 391-399.
  • 147 Alanne M. et al. Variation in the selenoprotein S gene locus is associated with coronary heart disease and ischaemic stroke in two independent Finnish cohorts. Human Gen 2007; 122: 355-365.
  • 148 Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 2001; 344: 501-509.
  • 149 Klein I, Ojamaa K. Thyroid hormone-targeting the heart. Endocrinology 2001; 142: 11-12.
  • 150 Trivieri MG. et al. Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc Natl Acad Sci USA 2006; 103: 6043-6048