Thromb Haemost 2014; 112(04): 812-824
DOI: 10.1160/TH14-01-0024
Animal Models
Schattauer GmbH

Lysyl oxidase (LOX) in vascular remodelling

Insight from a new animal model
Mar Orriols
1   Centro de Investigación Cardiovascular, CSIC-ICCC. Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
,
Anna Guadall
1   Centro de Investigación Cardiovascular, CSIC-ICCC. Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
,
María Galán
1   Centro de Investigación Cardiovascular, CSIC-ICCC. Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
,
Ingrid Martí-Pàmies
1   Centro de Investigación Cardiovascular, CSIC-ICCC. Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
,
Saray Varona
1   Centro de Investigación Cardiovascular, CSIC-ICCC. Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
,
Ricardo Rodríguez-Calvo
1   Centro de Investigación Cardiovascular, CSIC-ICCC. Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
,
Ana María Briones
2   Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
,
María A. Navarro
3   Facultad de Veterinaria, Universidad de Zaragoza, CIBEROBN, Zaragoza, Spain
,
Alicia de Diego
4   Unidad de Transgénesis, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
,
Jesús Osada
3   Facultad de Veterinaria, Universidad de Zaragoza, CIBEROBN, Zaragoza, Spain
,
José Martínez-González
1   Centro de Investigación Cardiovascular, CSIC-ICCC. Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
,
Cristina Rodríguez
1   Centro de Investigación Cardiovascular, CSIC-ICCC. Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
› Author Affiliations
Financial support: This work was supported by Sociedad Española de Cardiología (Proyecto SEC para Investigación Básica 2012) and the Spanish Ministerio de Economía y Competitividad (MINECO)-Instituto de Salud Carlos III (ISCIII) [grants PI12/01952, SAF2012–40127, RD12/0042/0053 and RD12/0042/0024]. AG and MG were supported by funds provided by Instituto de Salud Carlos III-Fondo de Investigaciones Sanitarias (PFIS and Sara Borrell programs respectively) and AMB is supported through the Ramón y Cajal program (RYC-2010–06473).
Further Information

Publication History

Received: 10 January 2014

Accepted after major revision: 06 May 2014

Publication Date:
21 November 2017 (online)

Summary

Lysyl oxidase (LOX) is an extracellular matrix-modifying enzyme that seems to play a critical role in vascular remodelling. However, the lack of viable LOX-deficient animal models has been an obstacle to deep in LOX biology. In this study we have developed a transgenic mouse model that over-expresses LOX in vascular smooth muscle cells (VSMC) to clarify whether LOX could regulate VSMC phenotype and vascular remodelling. The SM22 proximal promoter drove the expression of a transgene containing the human LOX cDNA. Two stable transgenic lines, phenotypically indistinguishable, were generated by conventional methods (TgLOX). Transgene expression followed the expected SMC-specific pattern. In TgLOX mice, real-time PCR and immunohistochemistry evidenced a strong expression of LOX in the media from aorta and carotid arteries, coincident with a higher proportion of mature collagen. VSMC isolated from TgLOX mice expressed high levels of LOX pro-enzyme, which was properly secreted and processed into mature and bioactive LOX. Interestingly, cell proliferation was significantly reduced in cells from TgLOX mice. Transgenic VSMC also exhibited low levels of Myh10 (marker of SMC phenotypic switching), PCNA (marker of cell proliferation) and MCP-1, and a weak activation of Akt and ERK1/2 in response to mitogenic stimuli. Accordingly, neointimal thickening induced by carotid artery ligation was attenuated in TgLOX mice that also displayed a reduction in PCNA and MCP-1 immunostaining. Our results give evidence that LOX plays a critical role in vascular remodelling. We have developed a new animal model to study the role of LOX in vascular biology.

The first two authors contributed equally to this work.


The last two authors contributed equally to this work.


 
  • References

  • 1 Fuster JJ, Fernández P, González-Navarro H. et al. Control of cell proliferation in atherosclerosis: insights from animal models and human studies. Cardiovasc Res 2010; 86: 254-264.
  • 2 Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002; 8: 1249-1256.
  • 3 Wessely R. New drug-eluting stent concepts. Nat Rev Cardiol 2010; 7: 194-203.
  • 4 Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 2011; 209: 139-151.
  • 5 Rodríguez C, Rodríguez-Sinovas A, Martínez-González J. Lysyl oxidase as a potential therapeutic target. Drug News Perspect 2008; 21: 218-224.
  • 6 Rodríguez C, Martínez-González J, Raposo B. et al. Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 2008; 79: 7-13.
  • 7 Rodriguez C, Raposo B, Martinez-Gonzalez J. et al. Low density lipoproteins down-regulates lysyl oxidase in vascular endothelial cells and the arterial wall. Arterioscler Thromb Vasc Biol 2002; 22: 1409-1414.
  • 8 Rodríguez C, Alcudia JF, Martínez-González J. et al. Statins normalize vascular lysyl oxidase down-regulation induced by proatherogenic risk factors. Cardiovasc Res 2009; 83: 595-603.
  • 9 Raposo B, Rodriguez C, Martinez-Gonzalez J. et al. High levels of homocysteine inhibit lysyl oxidase (LOX) and down-regulates LOX expression in vascular endothelial cells. Atherosclerosis 2004; 177: 1-8.
  • 10 Rodríguez C, Alcudia JF, Martínez-González J. et al. Lysyl oxidase (LOX) down-regulation by TNFalpha: A new mechanism underlying TNF-alpha-induced endothelial dysfunction. Atherosclerosis 2008; 196: 558-564.
  • 11 Payne SL, Hendrix MJ, Kirschmann DA. Paradoxical roles for lysyl oxidases in cancer--a prospect. J Cell Biochem 2007; 101: 1338-1354.
  • 12 Gacheru SN, Thomas KM, Murray SA. et al. Transcriptional and post-transcriptional control of lysyl oxidase expression in vascular smooth muscle cells: effects of TGF- 1 and serum deprivation. J Cell Biochem 1997; 65: 395-407.
  • 13 Green RS, Lieb ME, Weintraub AS. et al. Identification of lysyl oxidase and other platelet-derived growth factor-inducible genes in vascular smooth muscle cells by differential screening. Lab Invest 1995; 73: 476-482.
  • 14 Spears JR, Zhan H, Khurana S. et al. Modulation by beta-aminopropionitrile of vessel luminal narrowing and structural abnormalities in arterial wall collagen in a rabbit model of conventional balloon angioplasty versus laser balloon angioplasty. J Clin Invest 1994; 93: 1543-1553.
  • 15 Brasselet C, Durand E, Addad F. et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol 2005; 289: H2228-2233.
  • 16 Maki JM, Rasanen J, Tikkanen H. et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction and perinatal death in mice. Circulation 2002; 106: 2503-2509.
  • 17 Hornstra IK, Birge S, Starcher B. et al. Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem 2003; 278: 14387-14393.
  • 18 Rodríguez-Calvo R, Guadall A, Calvayrac O. et al. Over-expression of Neuron-derived Orphan Receptor-1 (NOR-1) exacerbates neointimal hyperplasia after vascular injury. Hum Mol Genet 2013; 22: 1949-1959.
  • 19 Nagy A, Gertsenstein M, Vintersten K. et al. Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 2003
  • 20 Churchman AT, Siow RC. Isolation, culture and characterisation of vascular smooth muscle cells. Methods Mol Biol 2009; 467: 127-138.
  • 21 Calvayrac O, Rodríguez-Calvo R, Alonso J. et al. CCL20 is increased in hyper-cholesterolemic subjects and is upregulated by LDL in vascular smooth muscle cells: role of NF- B. Arterioscler Thromb Vasc Biol 2011; 31: 2733-2741.
  • 22 Guadall A, Orriols M, Rodriguez-Calvo R. et al. Fibulin-5 is up-regulated by hypoxia in endothelial cells through A HIF-1{alpha} dependent mechanism. J Biol Chem 2011; 286: 7093-7103.
  • 23 Junqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 1979; 11: 447-55.
  • 24 Guadall A, Orriols M, Alcudia JF. et al. Hypoxia-induced ROS signaling is required for LOX up-regulation in endothelial cells. Front Biosci 2011; 3: 955-967.
  • 25 Wong CC, Gilkes DM, Zhang H. et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA 2011; 108: 16369-16374.
  • 26 Martinez-Gonzalez J, Rius J, Castello A. et al. Neuron-derived orphan receptor-1 (NOR-1) modulates vascular smooth muscle cell proliferation. Circ Res 2003; 92: 96-103.
  • 27 Onoda M, Yoshimura K, Aoki H. et al. Lysyl oxidase resolves inflammation by reducing monocyte chemoattractant protein-1 in abdominal aortic aneurysm. Atherosclerosis 2010; 208: 366-369.
  • 28 Baker AM, Bird D, Welti JC. et al. Lysyl oxidase plays a critical role in endothelial cell stimulation to drive tumor angiogenesis. Cancer Res 2013; 73: 583-594.
  • 29 Lucero HA, Ravid K, Grimsby JL. et al. Lysyl oxidase oxidizes cell membrane proteins and enhances the chemotactic response of vascular smooth muscle cells. J Biol Chem 2008; 283: 24103-24117.
  • 30 Hurtado PA, Vora S, Sume SS. et al. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation. Biochem Biophys Res Commun 2008; 366: 156-161.
  • 31 Mäki JM, Sormunen R, Lippo S. et al. Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 2005; 167: 927-936.
  • 32 Li L, Miano JM, Mercer B. et al. Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol 1996; 132: 849-859.
  • 33 Strobeck M, Kim S, Zhang JC. et al. Binding of serum response factor to CArG box sequences is necessary but not sufficient to restrict gene expression to arterial smooth muscle cells. J Biol Chem 2001; 276: 16418-16424.
  • 34 Kakkar R, Ye B, Stoller DA. et al. Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle-extrinsic process. Circ Res 2006; 98: 682-689.
  • 35 Li W, Nellaiappan K, Strassmaier T. et al. Localization and activity of lysyl oxidase within nuclei of fibrogenic cells. Proc Natl Acad Sci USA 1997; 94: 12817-12822.
  • 36 Saad FA, Torres M, Wang H. et al. Intracellular lysyl oxidase: effect of a specific inhibitor on nuclear mass in proliferating cells. Biochem Biophys Res Commun 2010; 396: 944-949.
  • 37 Owens GK, Kumar MS, Wamhoff BR. Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiol Rev 2004; 84: 767-801.
  • 38 Nuthakki VK, Fleser PS, Malinzak LE. et al. Lysyl oxidase expression in a rat model of arterial balloon injury. J Vasc Surg 2004; 40: 123-129.
  • 39 Kothapalli D, Liu SL, Bae YH. et al. Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening. Cell Rep 2012; 2: 1259-1271.
  • 40 Spinetti G, Wang M, Monticone R. et al. Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler Thromb Vasc Biol 2004; 24: 1397-402.
  • 41 Viedt C, Vogel J, Athanasiou T. et al. Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1. Arterioscler Thromb Vasc Biol 2002; 22: 914-920.
  • 42 Li W, Nugent MA, Zhao Y. et al. Lysyl oxidase oxidizes basic fibroblast growth factor and inactivates its mitogenic potential. J Cell Biochem 2003; 88: 152-164.
  • 43 Atsawasuwan P, Mochida Y, Katafuchi M. et al. Lysyl oxidase binds transforming growth factor-beta and regulates its signaling via amine oxidase activity. J Biol Chem 2008; 283: 34229-34240.
  • 44 Jeay S, Pianetti S, Kagan HM. et al. Lysyl oxidase inhibits ras-mediated transformation by preventing activation of NF-kappa B. Mol Cell Biol 2003; 23: 2251-2263.
  • 45 Grimsby JL, Lucero HA, Trackman PC. et al. Role of lysyl oxidase propeptide in secretion and enzyme activity. J Cell Biochem 2010; 111: 1231-1243.