Thromb Haemost 2008; 99(02): 271-278
DOI: 10.1160/TH07-10-0629
Theme Issue Article
Schattauer GmbH

Clearance of von Willebrand factor

Cécile V. Denis
1   INSERM U770, Le Kremlin-Bicêtre, France; Univ. Paris-Sud, Le Kremlin-Bicêtre, France
,
Olivier D. Christophe
1   INSERM U770, Le Kremlin-Bicêtre, France; Univ. Paris-Sud, Le Kremlin-Bicêtre, France
,
Beatrijs D. Oortwijn
2   Laboratory for Thrombosis and Haemostasis, Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
,
Peter J. Lenting
2   Laboratory for Thrombosis and Haemostasis, Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
2   Crucell Holland B.V., Department of Protein Discovery, Leiden, the Netherlands
› Author Affiliations
Further Information

Publication History

Received: 22 October 2007

Accepted after major revision: 11 January 2007

Publication Date:
24 November 2017 (online)

Summary

The life cycle of von Willebrand factor (VWF) comprises a number of distinct steps, ranging from the controlled expression of theVWF gene in endothelial cells and megakaryocytes to the removal of VWF from the circulation. The various aspects of VWF clearance have been the objects of intense research in the last few years, stimulated by observations thatVWF clearance is a relatively common component of the pathogenesis of type 1 von Willebrand disease (VWD). Moreover, improving the survival of VWF is now considered as a viable therapeutic strategy to prolong the half-life of factor VIII in order to optimise treatment of haemophilia A. The present review aims to provide an overview of recent findings with regard to the molecular basis of VWF clearance. A number of parameters have been identified that influence VWF clearance, including its glycosylation profile and a number of VWF missense mutations. In addition, in-vivo studies have been used to identify cells that contribute to the catabolism of VWF, providing a starting point for the identification of receptors that mediate the cellular uptake ofVWF.Finally, we discuss recent data describing chemically modification of VWF as an approach to prolong the half-life of the VWF/FVIII complex.

 
  • References

  • 1 Zlokovic BV. Clearing amyloid through the bloodbrain barrier. J Neurochem 2004; 89: 807-811.
  • 2 Sagare A, Deane R, Bell RD. et al. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 2007; 13: 1029-1031.
  • 3 Pullinger CR, Kane JP, Malloy MJ. Primary hypercholesterolemia: genetic causes and treatment of five monogenic disorders. Expert Rev Cardiovasc Ther 2003; 1: 107-119.
  • 4 Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 2003; 1: 1335-1342.
  • 5 Haberichter SL, Merricks EP, Fahs SA. et al. Reestablishment of VWF-dependent Weibel-Palade bodies in VWD endothelial cells. Blood 2005; 105: 145-152.
  • 6 Vischer UM, Wagner DD. von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel-Palade bodies. Blood 1994; 83: 3536-3544.
  • 7 Michaux G, Cutler DF. How to roll an endothelial cigar: the biogenesis of Weibel-Palade bodies. Traffic 2004; 5: 69-78.
  • 8 Rondaij MG, Bierings R, Kragt A. et al. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26: 1002-1007.
  • 9 Terraube V, Pendu R, Baruch D. et al. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice. J Thromb Haemost 2006; 4: 519-526.
  • 10 O'Seaghdha M, van Schooten CJ, Kerrigan SW. et al. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 2006; 273: 4831-4841.
  • 11 Pawar P, Shin PK, Mousa SA. et al. Fluid shear regulates the kinetics and receptor specificity of Staphylococcus aureus binding to activated platelets. J Immunol 2004; 173: 1258-1265.
  • 12 Hartleib J, Kohler N, Dickinson RB. et al. Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 2000; 96: 2149-2156.
  • 13 Qin F, Impeduglia T, Schaffer P. et al. Overexpression of von Willebrand factor is an independent risk factor for pathogenesis of intimal hyperplasia: preliminary studies. J Vasc Surg 2003; 37: 433-439.
  • 14 Pendu R, Terraube V, Christophe OD. et al. P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 2006; 108: 3746-3752.
  • 15 Zannettino AC, Holding CA, Diamond P. et al. Osteoprotegerin (OPG) is localized to the Weibel-Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor. J Cell Physiol 2005; 204: 714-723.
  • 16 Shahbazi S, Lenting PJ, Fribourg C. et al. Characterization of the interaction between von Willebrand factor and osteoprotegerin. J Thromb Haemost 2007; 5: 1956-1962.
  • 17 Lenting PJ, van Mourik JA, Mertens K. The life cycle of coagulation factor VIII in view of its structure and function. Blood 1998; 92: 3983-3996.
  • 18 Graw J, Brackmann HH, Oldenburg J. et al. Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet 2005; 6: 488-501.
  • 19 Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 1998; 67: 395-424.
  • 20 Wagner DD. Cell biology of von Willebrand factor. Annu Rev Cell Biol 1990; 6: 217-246.
  • 21 Piovella F, Ascari E, Sitar GM. et al. Immunofluorescent detection of factor VIII-related antigen in human platelets and megakaryoctes. Haemostasis 1974; 3: 288-295.
  • 22 Wagner DD, Mayadas T, Marder VJ. Initial glycosylation and acidic pH in the Golgi apparatus are required for multimerization of von Willebrand factor. J Cell Biol 1986; 102: 1320-1324.
  • 23 van Schooten CJ, Tjernberg P, Westein E. et al. Cysteine-mutations in von Willebrand factor associated with increased clearance. J Thromb Haemost 2005; 3: 2228-2237.
  • 24 Bierings R, van den Biggelaar M, Kragt A. et al. Efficiency of von Willebrand factor-mediated targeting of IL-8 into Weibel-Palade bodies. J Thromb Haemost 2007; 5: 2512-2519.
  • 25 van de Ven WJ, Voorberg J, Fontijn R. et al. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol Biol Rep 1990; 14: 265-275.
  • 26 Casonato A, Pontara E, Sartorello F. et al. Reduced von Willebrand factor survival in type Vicenza von Willebrand disease. Blood 2002; 99: 180-184.
  • 27 Hilbert L, Nurden P, Caron C. et al. Type 2N von Willebrand disease due to compound heterozygosity for R854Q and a novel R763G mutation at the cleavage site of von Willebrand factor propeptide. Thromb Haemost 2006; 96: 290-294.
  • 28 Denis C, Methia N, Frenette PS. et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 9524-9529.
  • 29 Titani K, Kumar S, Takio K. et al. Amino acid sequence of human von Willebrand factor. Biochemistry 1986; 25: 3171-3184.
  • 30 Matsui T, Titani K, Mizuochi T. Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. J Biol Chem 1992; 267: 8723-8731.
  • 31 Sodetz JM, Paulson JC, McKee PA. Carbohydrate composition and identification of blood group A, B, and H oligosaccharide structures on human Factor VIII/von Willebrand factor. J Biol Chem 1979; 254: 10754-10760.
  • 32 Samor B, Michalski JC, Mazurier C. et al. Primary structure of the major O-glycosidically linked carbohydrate unit of human von Willebrand factor. Glycoconj J 1989; 6: 263-270.
  • 33 Millar CM, Brown SA. Oligosaccharide structures of von Willebrand factor and their potential role in von Willebrand disease. Blood Rev 2006; 20: 83-92.
  • 34 Jenkins PV, O'Donnell JS. ABO blood group determines plasma von Willebrand factor levels: a biologic function after all?. Transfusion 2006; 46: 1836-1844.
  • 35 McCallum CJ, Peake IR, Newcombe RG, Bloom AL. Factor VIII levels and blood group antigens. Thromb Haemost 1983; 50: 757.
  • 36 O'Donnell JS, McKinnon TA, Crawley JT, Lane DA, Laffan MA. Bombay phenotype is associated with reduced plasma-VWF levels and an increased susceptibility to ADAMTS13 proteolysis. Blood 2005; 106: 1988-1991.
  • 37 O'Donnell J, Boulton FE, Manning RA, Laffan MA. Amount of H antigen expressed on circulating von Willebrand factor is modified by ABO blood group genotype and is a major determinant of plasma von Willebrand factor antigen levels. Arterioscler Thromb Vasc Biol 2002; 22: 335-341.
  • 38 Morelli VM, de Visser MC, Van Tilburg NH. et al. ABO blood group genotypes, plasma von Willebrand factor levels and loading of von Willebrand factor with A and B antigens. Thromb Haemost 2007; 97: 534-541.
  • 39 O'Donnell J, Mille-Baker B, Laffan M. Human umbilical vein endothelial cells differ from other endothelial cells in failing to express ABO blood group antigens. J Vasc Res 2000; 37: 540-547.
  • 40 O'Donnell J, Laffan MA. Dissociation of ABH antigen expression from von Willebrand factor synthesis in endothelial cell lines. Br J Haematol 2003; 121: 928-931.
  • 41 Sweeney JD, Hoernig LA. Intraplatelet von Willebrand factor and ABO blood group. Thromb Res 1992; 68: 393-398.
  • 42 Brown SA, Eldridge A, Collins PW. et al. Increased clearance of von Willebrand factor antigen post-DDAVP in Type 1 von Willebrand disease: is it a potential pathogenic process?. J Thromb Haemost 2003; 1: 1714-1717.
  • 43 Gallinaro L, Cattini MG, Bertomoro A. et al. How ABO blood groups affect von Willebrand factor levels in normal subjects. J Thromb Haemost 2007; 5 (Suppl. 01) P-T-200.
  • 44 Borchiellini A, Fijnvandraat K, ten Cate JW. et al. Quantitative analysis of von Willebrand factor propeptide release in vivo: effect of experimental endotoxemia and administration of 1-deamino-8-D-arginine vasopressin in humans. Blood 1996; 88: 2951-2958.
  • 45 Haberichter SL, Balistreri M, Christopherson P. et al. Assay of the von Willebrand factor (VWF) propeptide to identify patients with type 1 von Willebrand disease with decreased VWF survival. Blood 2006; 108: 3344-3351.
  • 46 Nossent AY, Van Marion V, Van Tilburg NH. et al. von Willebrand factor and its propeptide: the influence of secretion and clearance on protein levels and the risk of venous thrombosis. J Thromb Haemost 2006; 4: 2556-2562.
  • 47 Fijnvandraat K, Peters M, ten Cate JW. Inter-individual variation in half-life of infused recombinant factor VIII is related to pre-infusion von Willebrand factor antigen levels. Br J Haematol 1995; 91: 474-476.
  • 48 Vlot AJ, Mauser-Bunschoten EP, Zarkova AG. et al. The half-life of infused factor VIII is shorter in hemophiliac patients with blood group O than in those with blood group A. Thromb Haemost 2000; 83: 65-69.
  • 49 Plaimauer B, Schlokat U, Turecek PL. et al. Recombinant von Willebrand factor: preclinical development. Semin Thromb Hemost 2001; 27: 395-403.
  • 50 O'Donnell J, Boulton FE, Manning RA. et al. Genotype at the secretor blood group locus is a determinant of plasma von Willebrand factor level. Br J Haematol 2002; 116: 350-356.
  • 51 Sodetz JM, Pizzo SV, McKee PA. Relationship of sialic acid to function and in vivo survival of human factor VIII/von Willebrand factor protein. J Biol Chem 1977; 252: 5538-5546.
  • 52 Ellies LG, Ditto D, Levy GG. et al. Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc Natl Acad Sci USA 2002; 99: 10042-10047.
  • 53 Millar CM, Riddel AF, Brown SA. Quantitation of Binding of Ricinus communis Agglutinin I to Von Willebrand Factor (VWF): Investigation of Relationship with Plasma Clearance of VWF in Type 1 Von Willebrand Disease. ASH Annual Meeting Abstracts 2005; 106: 727.
  • 54 Sweeney JD, Novak EK, Reddington M, Takeuchi KH, Swank RT. The RIIIS/J inbred mouse strain as a model for von Willebrand disease. Blood 1990; 76: 2258-2265.
  • 55 Mohlke KL, Nichols WC, Westrick RJ. et al. A novel modifier gene for plasma von Willebrand factor level maps to distal mouse chromosome 11. Proc Natl Acad Sci USA 1996; 93: 15352-15357.
  • 56 Morange PE, Tregouet DA, Frere C. et al. Biological and genetic factors influencing plasma factor VIII levels in a healthy family population: results from the Stanislas cohort. Br J Haematol 2005; 128: 91-99.
  • 57 Smith PL, Lowe JB. Molecular cloning of a murine N-acetylgalactosamine transferase cDNA that determines expression of the T lymphocyte-specific CT oligosaccharide differentiation antigen. J Biol Chem 1994; 269: 15162-15171.
  • 58 Mohlke KL, Purkayastha AA, Westrick RJ. et al. Mvwf, a dominant modifier of murine von Willebrand factor, results from altered lineage-specific expression of a glycosyltransferase. Cell 1999; 96: 111-120.
  • 59 Carew JA, Quinn SM, Stoddart JH, Lynch DC. O-linked carbohydrate of recombinant von Willebrand factor influences ristocetin-induced binding to platelet glycoprotein 1b. J Clin Invest 1992; 90: 2258-2267.
  • 60 Schulte am Esch J, Robson SC, Knoefel WT. et al. Impact of O-linked glycosylation of the VWF-A1-domain flanking regions on platelet interaction. Br J Haematol 2005; 128: 82-90.
  • 61 Stoddart Jr. JH, Andersen J, Lynch DC. Clearance of normal and type 2A von Willebrand factor in the rat. Blood 1996; 88: 1692-1699.
  • 62 Matsui T, Hamako J, Ozeki Y. et al. Comparative study of blood group-recognizing lectins toward ABO blood group antigens on neoglycoproteins, glycoproteins and complex-type oligosaccharides. Biochim Biophys Acta 2001; 1525: 50-57.
  • 63 van Schooten CJ, Denis CV, Lisman T. et al. Variations in glycosylation of von Willebrand factor with O-linked sialylated T-antigen are associated with its plasma levels. Blood 2006; 109: 2430-2437.
  • 64 Dent JA, Galbusera M, Ruggeri ZM. Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit. J Clin Invest 1991; 88: 774-782.
  • 65 Furlan M, Robles R, Lamie B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 1996; 87: 4223-4234.
  • 66 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87: 4235-4244.
  • 67 Bowen DJ. Genome-wide linkage analysis of von Willebrand factor plasma levels implicates the ABO locus as a principal determinant: should we overlook ADAMTS13?. Thromb Haemost 2003; 90: 961.
  • 68 Millar CM, Starke R, Riddel AF. et al. Investigation of relationship between ADAMTS-13, von Willebrand factor antigen and collagen-binding activity in patients with type 1 von Willebrand disease. J Thromb Haemost 2005; 3 (Suppl. 01) P1471.
  • 69 Lenting PJ, van Schooten CJ, Denis CV. Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost 2007; 5: 1353-1360.
  • 70 Lenting PJ, Westein E, Terraube V. et al. An experimental model to study the in vivo survival of von Willebrand factor. Basic aspects and application to the R1205H mutation. J Biol Chem 2004; 279: 12102-12109.
  • 71 van Schooten CJ, Denis CV, Oortwijn BD. et al. Liver and spleen macrophages contribute to the clearance of von Willebrand factor and its complex with factor VIII. J Thromb Haemost 2007; 5 (Suppl. 01) O-W-017.
  • 72 Schneider SW, Nuschele S, Wixforth A. et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci USA 2007; 104: 7899-7903.
  • 73 Murphy JE, Pan C, Barnett T. et al. Site-specific pegylation of rFVIII results in prolonged in vivo efficacy. J Thromb Haemost 2007; 5 (Suppl. 01) P-T-022.
  • 74 Regan L, Jiang X, Ramsey P. et al. Biological activity of pegylated factor VIII. J Thromb Haemost 2007; 5 (Suppl. 01) P-T-026.
  • 75 Noe DA. A mathematical model of coagulation factor VIII kinetics. Haemostasis 1996; 26: 289-303.
  • 76 Schambeck CM, Grossmann R, Zonnur S. et al. High factor VIII (FVIII) levels in venous thromboembolism: role of unbound FVIII. Thromb Haemost 2004; 92: 42-46.
  • 77 Lollar P, Parker CG. Stoichiometry of the porcine factor VIII-von Willebrand factor association. J Biol Chem 1987; 262: 17572-17576.
  • 78 Leyte A, Verbeet MP, Brodniewicz-Proba T. et al. The interaction between human blood-coagulation factor VIII and von Willebrand factor. Characterization of a high-affinity binding site on factor VIII. Biochem J 1989; 257: 679-683.
  • 79 Turecek PL, Scheiflinger F, Siekmann J. et al. Biochemical and functional characterization of chemically modified recombinant von Willebrand factor (rVWF) as a carrier prolonging survival of rFVIII in hemophilia A knock-out mice. J Thromb Haemost 2007; 5 (Suppl. 01) O-M-018.
  • 80 Turecek PL, Siekmann J, Weber A. et al. Modification of rVWF with polysialic acid: Biochemical and functional characterization in mice with VWD. ASH Annual Meeting Abstracts 2006; 108: 1001.
  • 81 Hermeling S, Crommelin DJ, Schellekens H. et al. Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 2004; 21: 897-903.
  • 82 Molineux G. Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy 2003; 23: 3S-8S.
  • 83 Tang L, Pan C, Atwal H. et al. Pegylation protects factor VIII from the inhibition of antibody inhibitors. J Thromb Haemost 2007; 5 (Suppl. 01) P-T-036.
  • 84 Kuter DJ, Begley CG. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 2002; 100: 3457-3469.
  • 85 van Dijk K, van der Bom JG, Lenting PJ. et al. Factor VIII half-life and clinical phenotype of severe hemophilia A. Haematologica 2005; 90: 494-498.