Thromb Haemost 2007; 97(05): 774-787
DOI: 10.1160/TH06-12-0744
Review Article
Schattauer GmbH

Cellular and molecular mechanisms of hypoxia-inducible factor driven vascular remodeling

Jörg Hänze
1   University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
,
Norbert Weissmann
1   University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
,
Friedrich Grimminger
1   University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
,
Werner Seeger
1   University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany
,
Frank Rose
2   Department of Radiotherapy and Radiooncology, University of Marburg, Marburg, Germany
› Author Affiliations
Financial support: Studies on this subject performed in our laboratory were supported by the Deutsche Forschungsgemeinschaft SFB 547 projects.
Further Information

Publication History

Received 30 December 2006

Accepted after resubmission 01 March 2007

Publication Date:
24 November 2017 (online)

Summary

Hypoxia-inducible factor (HIF) is an oxygen-dependent transcription factor that activates a diverse set of target genes, the products of which are involved in adaptive processes to hypoxia. Employing genetic manipulation of HIF expression, in-vivo and cellular studies have focused on HIF as a crucial factor affecting hypoxia-induced vascular remodeling.Vascular remodeling comprises processes which establish and improve blood vessel supply such as vasculogenesis, angiogenesis and arteriogenesis. These processes are observed during ontogenesis, tumor progression, ischemic disease or physical training. Furthermore, under hypoxic conditions, a pulmonary-specific type of vascular remodeling called pulmonary arterial remodeling occurs that is characterized by thickening of the vessel wall with a concomitant reduction in the vessel lumen area, thereby limiting blood flow.This response results in pulmonary hypertension with right ventricular hypertrophy, a lethal disease. In this review, we summarize and discuss mechanisms by which HIF interferes with the different vascular remodeling processes.

 
  • References

  • 1 Semenza GL, Koury ST, Nejfelt MK. et al. Celltype- specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci USA 1991; 88: 8725-8729.
  • 2 Semenza GL, Nejfelt MK, Chi SM. et al. Hypoxiainducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci USA 1991; 88: 5680-5684.
  • 3 Wang GL, Semenza GL. Characterization of hypoxia- inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 1993; 268: 21513-21518.
  • 4 Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 1993; 90: 4304-4308.
  • 5 Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005 2005 re12
  • 6 Wang GL, Jiang BH, Rue EA. Hypoxia-induciblefactor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510-5514.
  • 7 Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270: 1230-1237.
  • 8 Ema M, Taya S, Yokotani N. et al. A novel bHLHPAS factor with close sequence similarity to hypoxiainducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 1997; 94: 4273-4278.
  • 9 Gu YZ, Moran SM, Hogenesch JB. et al. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 1998; 07: 205-213.
  • 10 Hirose K, Morita M, Ema M. et al. cDNA cloning and tissue-specific expression of a novel basic helixloop- helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol 1996; 16: 1706-1713.
  • 11 Takahata S, Sogawa K, Kobayashi A. et al. Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem Biophys Res Commun 1998; 248: 789-794.
  • 12 Chun YS, Choi E, Yeo EJ. et al. A new HIF-1 alpha variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses. J Cell Sci 2001; 114: 4051-4061.
  • 13 Maynard MA, Qi H, Chung J. et al. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 2003; 278: 11032-11040.
  • 14 Makino Y, Cao R, Svensson K. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 2001; 414: 550-554.
  • 15 Makino Y, Kanopka A, Wilson WJ. et al. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 2002; 277: 32405-32408.
  • 16 Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002; 16: 1151-1162.
  • 17 Epstein AC, Gleadle JM, McNeill LA. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43-54.
  • 18 Huang J, Zhao Q, Mooney SM. et al. Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 2002; 277: 39792-39800.
  • 19 Berra E, Ginouves A, Pouyssegur J. The hypoxiainducible- factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep 2006; 07: 41-45.
  • 20 Metzen E, Berchner-Pfannschmidt U, Stengel P. et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci 2003; 116: 1319-1326.
  • 21 Metzen E, Stiehl DP, Doege K. et al. Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J 2005; 387: 711-717.
  • 22 Oehme F, Ellinghaus P, Kolkhof P. et al. Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun 2002; 296: 343-349.
  • 23 Takahashi Y, Takahashi S, Shiga Y. et al. Hypoxic induction of prolyl 4-hydroxylase alpha (I) in cultured cells. J Biol Chem 2000; 275: 14139-14146.
  • 24 Baek JH, Mahon PC, Oh J. et al. OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol Cell 2005; 17: 503-512.
  • 25 Maxwell PH, Wiesener MS, Chang GW. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271-275.
  • 26 Paltoglou S, Roberts BJ. HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases. Oncogene 2007; 26: 604-609.
  • 27 Jewell UR, Kvietikova I, Scheid A. et al. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 2001; 15: 1312-1314.
  • 28 Berra E, Benizri E, Ginouves A. et al. HIF prolylhydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 2003; 22: 4082-4090.
  • 29 Takeda K, Ho VC, Takeda H. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 2006; 26: 8336-8346.
  • 30 Lando D, Peet DJ, Gorman JJ. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 2002; 16: 1466-1471.
  • 31 Dayan F, Roux D, Brahimi-Horn MC. et al. The oxygen sensor factor-inhibiting hypoxia-inducible factor- 1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res 2006; 66: 3688-3698.
  • 32 Kietzmann T, Gorlach A. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 2005; 16: 474-486.
  • 33 Chandel NS, Maltepe E, Goldwasser E. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 1998; 95: 11715-11720.
  • 34 Chandel NS, McClintock DS, Feliciano CE. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275: 25130-25138.
  • 35 Emerling BM, Platanias LC, Black E. et al. Mitochondrial reactive oxygen species activation of p38 mi- togen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol 2005; 25: 4853-4862.
  • 36 Gerald D, Berra E, Frapart YM. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 2004; 118: 781-794.
  • 37 Isaacs JS, Jung YJ, Mole DR. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 2005; 08: 143-153.
  • 38 Selak MA, Armour SM, MacKenzie ED. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 07: 77-85.
  • 39 Liu Q, Berchner-Pfannschmidt U, Moller U. et al. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 2004; 101: 4302-4307.
  • 40 Gorlach A, Berchner-Pfannschmidt U, Wotzlaw C. et al. Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Rac1. Thromb Haemost 2003; 89: 926-935.
  • 41 Goyal P, Weissmann N, Grimminger F. et al. Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radic Biol Med 2004; 36: 1279-1288.
  • 42 Hirota K, Semenza GL. Rac1 activity is required for the activation of hypoxia-inducible factor 1. J Biol Chem 2001; 276: 21166-21172.
  • 43 Maranchie JK, Zhan Y.. Nox4 is critical for hypoxiainducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res 2005; 65: 9190-9193.
  • 44 Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 2000; 275: 26765-26771.
  • 45 Page EL, Robitaille GA, Pouyssegur J. et al. Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 2002; 277: 48403-48409.
  • 46 Ema M, Hirota K, Mimura J. et al. Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 1999; 18: 1905-1914.
  • 47 Kim WJ, Cho H, Lee SW. et al. Antisense-thioredoxin inhibits angiogenesis via pVHL-mediated hypoxia- inducible factor-1alpha degradation. Int J Oncol 2005; 26: 1049-1052.
  • 48 Welsh SJ, Bellamy WT, Briehl MM. et al. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 2002; 62: 5089-5095.
  • 49 Zhou J, Damdimopoulos AE, Spyrou G. et al. Thioredoxin 1 and thioredoxin 2 have opposed regulatory functions on hypoxia inducible factor-1alpha. J Biol Chem. 2007 epub ahead of print
  • 50 Gradin K, Takasaki C, Fujii-Kuriyama Y. et al. The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J Biol Chem 2002; 277: 23508-23514.
  • 51 Mottet D, Ruys SP, Demazy C. et al. Role for casein kinase 2 in the regulation of HIF-1 activity. Int J Cancer 2005; 117: 764-774.
  • 52 Mylonis I, Chachami G, Samiotaki M. et al. Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 2006; 281: 33095-33106.
  • 53 Bae SH, Jeong JW, Park JA. et al. Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 2004; 32: 394-400.
  • 54 Shao R, Zhang FP, Tian F. et al. Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett 2004; 569: 293-300.
  • 55 Nakayama K, Ronai Z. Siah: new players in the cellular response to hypoxia. Cell Cycle 2004; 03: 1345-1347.
  • 56 Simon MC. Siah proteins, HIF prolyl hydroxylases, and the physiological response to hypoxia. Cell 2004; 117: 851-853.
  • 57 Blouin CC, Page EL, Soucy GM. et al. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1alpha. Blood 2004; 103: 1124-1130.
  • 58 Kim JW, Tchernyshyov I, Semenza GL. et al. HIF- 1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 03: 177-185.
  • 59 Papandreou I, Cairns RA, Fontana L. et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 03: 187-197.
  • 60 Semenza GL, Roth PH, Fang HM. et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994; 269: 23757-23763.
  • 61 Coulet F, Nadaud S, Agrapart M. et al. Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 2003; 278: 46230-46240.
  • 62 Hu J, Discher DJ, Bishopric NH. et al. Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem Biophys Res Commun 1998; 245: 894-899.
  • 63 Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 1993; 82: 3610-3615.
  • 64 Gleadle JM, Ebert BL, Firth JD. et al. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol 1995; 268: C1362-1368.
  • 65 Kuwabara K, Ogawa S, Matsumoto M. et al. Hypoxia- mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 1995; 92: 4606-4610.
  • 66 Liu Y, Cox SR, Morita T. et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. Circ Res 1995; 77: 638-643.
  • 67 Kothari S, Cizeau J, McMillan-Ward E. et al. BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene 2003; 22: 4734-4744.
  • 68 Gustafsson MV, Zheng X, Pereira T. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 09: 617-628.
  • 69 Patel NS, Li JL, Generali D. et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 2005; 65: 8690-8697.
  • 70 Maisonpierre PC, Suri C, Jones PF. et al. Angiopoietin- 2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55-60.
  • 71 Ben-Yosef Y, Lahat N, Shapiro S. et al. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/ reoxygenation. Circ Res 2002; 90: 784-791.
  • 72 Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 2000; 58: 2351-2366.
  • 73 Lee M, Song SU, Ryu JK. et al. Sp1-dependent regulation of the tissue inhibitor of metalloproteinases-1 promoter. J Cell Biochem 2004; 91: 1260-1268.
  • 74 Shimoda LA, Fallon M, Pisarcik S. et al. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2006; 291: L941-949.
  • 75 Hu CJ, Wang LY, Chodosh LA. et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 2003; 23: 9361-9374.
  • 76 Aprelikova O, Chandramouli GV, Wood M. et al. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J Cell Biochem 2004; 92: 491-501.
  • 77 Gerber HP, Condorelli F, Park J. et al. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk- 1/KDR, is up-regulated by hypoxia. J Biol Chem 1997; 272: 23659-23667.
  • 78 Elvert G, Kappel A, Heidenreich R. et al. Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 2003; 278: 7520-7530.
  • 79 Kappel A, Ronicke V, Damert A. et al. Identification of vascular endothelial growth factor (VEGF) receptor- 2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 1999; 93: 4284-4292.
  • 80 Warnecke C, Zaborowska Z, Kurreck J. et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF- 2alpha target gene in Hep3B and Kelly cells. FASEB J 2004; 18: 1462-1464.
  • 81 Aprelikova O, Wood M, Tackett S. et al. Role of ETS transcription factors in the hypoxia-inducible factor- 2 target gene selection. Cancer Res 2006; 66: 5641-5647.
  • 82 Takeda N, Maemura K, Imai Y. et al. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res 2004; 95: 146-153.
  • 83 Okuyama H, Krishnamachary B, Zhou YF. et al. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem 2006; 281: 15554-15563.
  • 84 Heil M, Eitenmuller I, Schmitz-Rixen T. et al. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 2006; 10: 45-55.
  • 85 Cummins EP, Taylor CT. Hypoxia-responsive transcription factors. Pflugers Arch 2005; 450: 363-371.
  • 86 Iyer NV, Kotch LE, Agani F. et al. Cellular and developmental control of O2 homeostasis by hypoxiainducible factor 1 alpha. Genes Dev 1998; 12: 149-162.
  • 87 Compernolle V, Brusselmans K, Franco D. et al. Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxiainducible factor-1alpha. Cardiovasc Res 2003; 60: 569-579.
  • 88 Kozak KR, Abbott B, Hankinson O. ARNT-deficient mice and placental differentiation. Dev Biol 1997; 191: 297-305.
  • 89 Maltepe E, Schmidt JV, Baunoch D. et al. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 1997; 386: 403-407.
  • 90 Peng J, Zhang L, Drysdale L. et al. The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 2000; 97: 8386-8391.
  • 91 Compernolle V, Brusselmans K, Acker T. et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 2002; 08: 702-710.
  • 92 Forsythe JA, Jiang BH, Iyer NV. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604-4613.
  • 93 Tsuzuki Y, Fukumura D, Oosthuyse B. et al. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 2000; 60: 6248-6252.
  • 94 Kotch LE, Iyer NV, Laughner E. et al. Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 1999; 209: 254-267.
  • 95 Gonzalez-Pacheco FR, Deudero JJ, Castellanos MC. et al. Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol 2006; 291: H1395-1401.
  • 96 Mizukami Y, Jo WS, Duerr EM. et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 2005; 11: 992-997.
  • 97 Ziel KA, Grishko V, Campbell CC. et al. Oxidants in signal transduction: impact on DNA integrity and gene expression. FASEB J 2005; 19: 387-394.
  • 98 Olsson AK, Dimberg A, Kreuger J. et al. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol 2006; 07: 359-371.
  • 99 Rahimi N, Dayanir V, Lashkari K. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J Biol Chem 2000; 275: 16986-16992.
  • 100 Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/ VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem 2001; 276: 26969-26979.
  • 101 Autiero M, Waltenberger J, Communi D. et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 09: 936-943.
  • 102 Ameln H, Gustafsson T, Sundberg CJ. et al. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 2005; 19: 1009-1011.
  • 103 Tang K, Breen EC, Wagner H. et al. HIF and VEGF relationships in response to hypoxia and sciatic nerve stimulation in rat gastrocnemius. Respir Physiol Neurobiol 2004; 144: 71-80.
  • 104 Richardson RS, Noyszewski EA, Kendrick KF. et al. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 1995; 96: 1916-1926.
  • 105 Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 09: 653-660.
  • 106 Lloyd PG, Yang HT, Terjung RL. Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide. Am J Physiol Heart Circ Physiol 2001; 281: H2528-2538.
  • 107 Murohara T, Asahara T, Silver M. et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 1998; 101: 2567-2578.
  • 108 Sato TN, Tozawa Y, Deutsch U. et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70-74.
  • 109 Noseda M, Chang L, McLean G. et al. Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol 2004; 24: 8813-8822.
  • 110 Pichiule P, Chavez JC, LaManna JC. Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem 2004; 279: 12171-12180.
  • 111 Shweiki D, Itin A, Soffer D. et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843-845.
  • 112 Shyu KG. Enhancement of new vessel formation by angiopoietin-2/Tie2 signaling in endothelial progenitor cells: a new hope for future therapy?. Cardiovasc Res 2006; 72: 359-360.
  • 113 Kelly BD, Hackett SF, Hirota K. et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 2003; 93: 1074-1081.
  • 114 Tang N, Wang L, Esko J. et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004; 06: 485-495.
  • 115 Licht AH, Muller-Holtkamp F, Flamme I. et al. Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood 2006; 107: 584-590.
  • 116 Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood 2006; 107: 2223-2233.
  • 117 Sainson RC, Harris AL. Hypoxia-regulated differentiation: let's step it up a Notch. Trends Mol Med 2006; 12: 141-143.
  • 118 Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 2002; 64: 372-383.
  • 119 Sullivan DC, Bicknell R. New molecular pathways in angiogenesis. Br J Cancer 2003; 89: 228-231.
  • 120 Vihanto MM, Plock J, Erni D. et al. Hypoxia upregulates expression of Eph receptors and ephrins in mouse skin. FASEB J 2005; 19: 1689-1691.
  • 121 Peichev M, Naiyer AJ, Pereira D. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952-958.
  • 122 Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med 2004; 08: 498-508.
  • 123 Deindl E, Buschmann I, Hoefer IE. et al. Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 2001; 89: 779-786.
  • 124 Lloyd PG, Prior BM, Li H. et al. VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercisetrained rats. Am J Physiol Heart Circ Physiol 2005; 288: H759-768.
  • 125 Patel TH, Kimura H, Weiss CR. et al. Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res 2005; 68: 144-154.
  • 126 Ben-Yosef R. Hyperthermia combined with radiation therapy in the treatment of cancer patients. Harefuah 2002; 141: 418–421, 500 Am J Physiol Lung Cell Mol Physiol 2001; 281: L202-208.
  • 127 Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 1997; 59: 89-144.
  • 128 Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006; 99: 675-691.
  • 129 Jeffery TK, Wanstall JC. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther 2001; 92: 1-20.
  • 130 Schermuly RT, Ghofrani HA, Weissmann N. Prostanoids and phosphodiesterase inhibitors in experimental pulmonary hypertension. Curr Top Dev Biol 2005; 67: 251-284.
  • 131 von Euler US, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 1946; 12: 301-320.
  • 132 Weissmann N, Grimminger F, Olschewski A. et al. Hypoxic pulmonary vasoconstriction: a multifactorial response?. Am J Physiol Lung Cell Mol Physiol 2001; 281: L314-317.
  • 133 Weissmann N, Sommer N, Schermuly RT. et al. Oxygen sensors in hypoxic pulmonary vasoconstriction. Cardiovasc Res 2006; 71: 620-629.
  • 134 Weissmann N, Nollen M, Gerigk B. et al. Downregulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects of nitric oxide. Am J Physiol Heart Circ Physiol 2003; 284: H931-938.
  • 135 Bee D, Wach RA. Hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Respir Physiol 1984; 56: 91-103.
  • 136 Hampl V, Archer SL, Nelson DP. et al. Chronic EDRF inhibition and hypoxia: effects on pulmonary circulation and systemic blood pressure. J Appl Physiol 1993; 75: 1748-1757.
  • 137 McMurtry IF, Morris KG, Petrun MD. Blunted hypoxic vasoconstriction in lungs from short-term highaltitude rats. Am J Physiol 1980; 238: H849-857.
  • 138 Reeve HL, Michelakis E, Nelson DP. et al. Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol 2001; 90: 2249-2256.
  • 139 Zhao L, Crawley DE, Hughes JM. et al. Endothelium- derived relaxing factor activity in rat lung during hypoxic pulmonary vascular remodeling. J Appl Physiol 1993; 74: 1061-1065.
  • 140 Emery CJ, Bee D, Barer GR. Mechanical properties and reactivity of vessels in isolated perfused lungs of chronically hypoxic rats. Clin Sci (Lond) 1981; 61: 569-580.
  • 141 Li H, Chen SJ, Chen YF. et al. Enhanced endothelin- 1 and endothelin receptor gene expression in chronic hypoxia. J Appl Physiol 1994; 77: 1451-1459.
  • 142 Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol 1995; 269: H1186-1194.
  • 143 Semenza GL. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest 2005; 128 (Suppl. 06) (Suppl) 592S-594S.
  • 144 Semenza GL. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 2004; 96: 1173-7. discussion 1170–1172
  • 145 Yu AY, Frid MG, Shimoda LA. et al. Temporal, spatial, and oxygen-regulated expression of hypoxiainducible factor-1 in the lung. Am J Physiol 1998; 275: L818-826.
  • 146 Brusselmans K, Compernolle V, Tjwa M. et al. Heterozygous deficiency of hypoxia-inducible factor- 2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest 2003; 111: 1519-1527.
  • 147 Shimoda LA, Manalo DJ, Sham JS, et al. Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia
  • 148 Yu AY, Shimoda LA, Iyer NV. et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest 1999; 103: 691-696.
  • 149 Earley S, Resta TC. Estradiol attenuates hypoxiainduced pulmonary endothelin-1 gene expression. Am J Physiol Lung Cell Mol Physiol 2002; 283: L86-93.
  • 150 Shimoda LA, Sylvester JT, Booth GM. et al. Inhibition of voltage-gated K(+) currents by endothelin-1 in human pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2001; 281: L1115-1122.
  • 151 Ivy DD, Yanagisawa M, Gariepy CE. et al. Exaggerated hypoxic pulmonary hypertension in endothelin B receptor-deficient rats. Am J Physiol Lung Cell Mol Physiol 2002; 282: L703-712.
  • 152 Norris ML, Millhorn DE. Hypoxia-induced protein binding to O2-responsive sequences on the tyrosine hydroxylase gene. J Biol Chem 1995; 270: 23774-23779.
  • 153 Bonnet S, Michelakis ED, Porter CJ. et al. An abnormal mitochondrial-hypoxia inducible factor- 1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 2006; 113: 2630-2641.
  • 154 Wang J, Weigand L, Lu W. et al. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 2006; 98: 1528-1537.
  • 155 Koulmann N, Novel-Chate V, Peinnequin A. et al. Cyclosporin A inhibits hypoxia-induced pulmonary hypertension and right ventricle hypertrophy. Am J Respir Crit Care Med 2006; 174: 699-705.
  • 156 Weir EK, Olschewski A. Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc Res 2006; 71: 630-641.
  • 157 Weissmann N, Dietrich A, Fuchs B. et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 2006; 103: 19093-19098.
  • 158 Tuder RM, Chacon M, Alger L. et al. Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis. J Pathol 2001; 195: 367-374.
  • 159 Hellwig-Burgel T, Stiehl DP, Wagner AE. et al. Review: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactions. J Interferon Cytokine Res 2005; 25: 297-310.
  • 160 BelAiba RS, Djordjevic T, Bonello S. et al. Redoxsensitive regulation of the HIF pathway under non-hypoxic conditions in pulmonary artery smooth muscle cells. Biol Chem 2004; 385: 249-257.
  • 161 Waypa GB, Guzy R, Mungai PT. et al. Increases in mitochondrial reactive oxygen species trigger hypoxiainduced calcium responses in pulmonary artery smooth muscle cells. Circ Res 2006; 99: 970-978.
  • 162 Naeye RL. Polycythemia and hypoxia. Individual effects on heart and pulmonary arteries. Am J Pathol 1967; 50: 1027-1033.
  • 163 Swigart RH. Polycythemia and right ventricular hypertrophy. Circ Res 1965; 17: 30-38.
  • 164 Petit RD, Warburton RR, Ou LC. et al. Exogenous erythropoietin fails to augment hypoxic pulmonary hypertension in rats. Respir Physiol 1993; 91: 271-282.
  • 165 Petit RD, Warburton RR, Ou LC. et al. Pulmonary vascular adaptations to augmented polycythemia during chronic hypoxia. J Appl Physiol 1995; 79: 229-235.
  • 166 Weissmann N, Manz D, Buchspies D. et al. Congenital erythropoietin over-expression causes „antipulmonary hypertensive“ structural and functional changes in mice, both in normoxia and hypoxia. Thromb Haemost 2005; 94: 630-638.
  • 167 Jung F, Palmer LA, Zhou N. et al. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 2000; 86: 319-325.
  • 168 Melillo G, Taylor LS, Brooks A. et al. Functional requirement of the hypoxia-responsive element in the activation of the inducible nitric oxide synthase promoter by the iron chelator desferrioxamine. J Biol Chem 1997; 272: 12236-12243.
  • 169 Palmer LA, Semenza GL, Stoler MH. et al. Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol 1998; 274: L212-219.
  • 170 Fagan KA, Morrissey B, Fouty BW. et al. Upregulation of nitric oxide synthase in mice with severe hypoxia- induced pulmonary hypertension. Respir Res 2001; 02: 306-313.
  • 171 Xue C, Johns RA. Upregulation of nitric oxide synthase correlates temporally with onset of pulmonary vascular remodeling in the hypoxic rat. Hypertension 1996; 28: 743-753.
  • 172 Le Cras TD, Xue C, Rengasamy A. et al. Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am J Physiol 1996; 270: L164-170.
  • 173 Xue C, Rengasamy A, Le Cras TD. et al. Distribution of NOS in normoxic vs. hypoxic rat lung: upregulation of NOS by chronic hypoxia. Am J Physiol 1994; 267: L667-678.
  • 174 Steudel W, Ichinose F, Huang PL. et al. Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res 1997; 81: 34-41.
  • 175 Ozaki M, Kawashima S, Yamashita T. et al. Reduced hypoxic pulmonary vascular remodeling by nitric oxide from the endothelium. Hypertension 2001; 37: 322-327.
  • 176 Champion HC, Bivalacqua TJ, Greenberg SS. et al. Adenoviral gene transfer of endothelial nitric-oxide synthase (eNOS) partially restores normal pulmonary arterial pressure in eNOS-deficient mice. Proc Natl Acad Sci USA 2002; 99: 13248-13253.
  • 177 de Caestecker M. Serotonin signaling in pulmonary hypertension. Circ Res 2006; 98: 1229-1231.
  • 178 Eddahibi S, Fabre V, Boni C. et al. Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. Circ Res 1999; 84: 329-336.
  • 179 Rose F, Grimminger F, Appel J. et al. Hypoxic pulmonary artery fibroblasts trigger proliferation of vascular smooth muscle cells: role of hypoxia-inducible transcription factors. FASEB J 2002; 16: 1660-1661.
  • 180 Eul B, Rose F, Krick S. et al. Impact of HIF-1alpha and HIF-2alpha on proliferation and migration of human pulmonary artery fibroblasts in hypoxia. FASEB J 2006; 20: 163-165.
  • 181 Krick S, Hanze J, Eul B. et al. Hypoxia-driven proliferation of human pulmonary artery fibroblasts: cross-talk between HIF-1alpha and an autocrine angiotensin system. FASEB J 2005; 19: 857-859.
  • 182 Feldser D, Agani F, Iyer NV. et al. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 1999; 59: 3915-3918.
  • 183 Teng X, Li D, Champion HC. et al. FIZZ1/RELMalpha, a novel hypoxia-induced mitogenic factor in lung with vasoconstrictive and angiogenic properties. Circ Res 2003; 92: 1065-1067.
  • 184 Renigunta A, Hild C, Rose F. et al. Human RELMbeta is a mitogenic factor in lung cells and induced in hypoxia. FEBS Lett 2006; 580: 900-903.
  • 185 Schermuly RT, Dony E, Ghofrani HA. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 2005; 115: 2811-2821.
  • 186 Kwapiszewska G, Wilhelm J, Wolff S. et al. Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension. Respir Res 2005; 06: 109
  • 187 Mailhos C, Modlich U, Lewis J. et al. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 2001; 69: 135–144. Differentiation 2001; 69: 135-144.