Thromb Haemost 2005; 94(02): 304-311
DOI: 10.1160/TH05-05-0369
Theme Issue Article
Schattauer GmbH

The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration

Simone Bergmann
1   Research Center for Infectious Diseases, University of Würzburg, Würzburg
,
Manfred Rohde
2   GBF-German Research Centre for Biotechnology, Braunschweig
,
Klaus T. Preissner
3   Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
,
Sven Hammerschmidt
1   Research Center for Infectious Diseases, University of Würzburg, Würzburg
› Author Affiliations
Grant support: This work was supported in part by the Deutsche Forschungsgemeinschaft to S. Hammerschmidt (Sonderforschungsbereich Grant 479-A7), M. Rohde (DFG-Ro 2407/1), and the Bundesministerium für Bildung und Forschung to S. Hammerschmidt (BMBF-CAPNETZ C8).
Further Information

Publication History

Received: 27 May 2005

Accepted after major revision: 01 July 2005

Publication Date:
05 December 2017 (online)

Summary

The glycolytic enzyme α-enolase represnts one of the nonclassical cell surface plasminogen-binding proteins of Streptococcus pneumoniae. In this study we investigated the impact of an internal plasminogen-binding motif of enolase on degradation of extracellular matrix and pneumococcal transmigration. In the presence of host-derived plasminogen activators (PA) tissuetype PA or urokinase PA and plasminogen S. pneumoniae expressing wild-type enolase efficiently degraded Matrigel or extracellular matrix (ECM). In contrast, amino acid substitutions in the nine residue plasminogen-binding motif of enolase significantly reduced degradation of ECM or Matrigel by mutated pneumococci. Similarly, recombinant wild-type enolase but not a mutated enolase derivative that lacks plasminogen-binding activity efficiently degraded ECM and Matrigel, respectively. In particular, bacterial cell enolase-bound plasmin potentiated dissolution of fibrin or laminin and transmigration of pneumococci through a fibrin matrix. In conclusion, these results provide evidence that the enolase is the major plasminogen-binding protein of pneumococci and that the nine residue plasminogen-binding motif of enolase is the key cofactor for plasmin-mediated pneumococcal degradation and transmigration through host ECM.

 
  • References

  • 1 Pollanen J, Stephens RW, Vaheri A. Directed plasminogen activation at the surface of normal and malignant cells. Adv Cancer Res 1991; 57: 273-328.
  • 2 Miyashita C, Wenzel E, Heiden M. Plasminogen: a brief introduction into its biochemistry and function. Haemostasis 1988; 18 S1 7-13.
  • 3 Castellino FJ, Powell JR. Human plasminogen. Methods Enzymol 1981; 80: 365-78.
  • 4 Collen D, Lijnen HR. Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential?. Blood 1994; 84: 680-6.
  • 5 Vassalli JD, Pepper MS. Tumour biology. Membrane proteases in focus. Nature 1994; 370: 14-5.
  • 6 Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 1997; 91: 439-42.
  • 7 Dano K Andreasen PA, Grondahl-Hansen J. et al. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 1985; 44: 139-266.
  • 8 Saksela O, Rifkin DB. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol 1988; 4: 93-126.
  • 9 Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993; 73: 161-95.
  • 10 Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost 2001; 86: 346-55.
  • 11 Redlitz A, Fowler BJ, Plow EF. et al. The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 1995; 227: 407-15.
  • 12 Bergmann S. et al. α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 2001; 40: 1273-87.
  • 13 Bergmann S, Wild D, Diekmann O. et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed α-enolase of Streptococcus pneumoniae . Mol Microbiol 2003; 49: 411-23.
  • 14 Bergmann S, Rohde M, Hammerschmidt S. Glyceraldehyde- 3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogenbinding protein. Infect Immun 2004; 72: 2416-9.
  • 15 Bergmann S, Rohde M, Chhatwal GS. et al. Characterization of plasmin(ogen) binding to Streptococcus pneumoniae . Indian J Med Res 2004; 119S: 29-32.
  • 16 Eberhard T, Kronvall G, Ullberg M. et al. Surface bound plasmin promotes migration of Streptococcus pneumoniae through reconstituted basement membranes. Microb Pathog 1999; 26: 175-81.
  • 17 Lottenberg R, Minning-Wenz D, Boyle MD. Capturing host plasmin(ogen): a common mechanism for invasive pathogens?. Trends Microbiol 1994; 2: 20-4.
  • 18 Lottenberg R. A novel approach to explore the role of plasminogen in bacterial pathogenesis. Trends Microbiol 1997; 5: 466-7.
  • 19 Ehinger S. et al. Plasmin(ogen)-binding α-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 2004; 343: 997-1005.
  • 20 Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science 1970; 170: 1095-6.
  • 21 Preissner KT. Specific binding of plasminogen to vitronectin. Evidence for a modulatory role of vitronectin on fibrin(ogen)-induced plasmin formation by tissue plasminogen activator. Biochem Biophys Res Commun 1990; 168: 966-71.
  • 22 Hedman K, Kurkinen M, Alitalo K. et al. Isolation of the pericellular matrix of human fibroblast cultures. J Cell Biol 1979; 81: 83-91.
  • 23 Hammerschmidt S, Talay SR, Brandtzaeg P. et al. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 1997; 25: 1113-24.
  • 24 Lahteenmaki K, Kuusela P, Korhonen TK. Plasminogen activation in degradation and penetration of extracellular matrices and basement membranes by invasive bacteria. Methods 2000; 21: 125-32.
  • 25 Salonen EM, Zitting A, Vaheri A. Laminin interacts with plasminogen and its tissue-type activator. FEBS Lett 1984; 172: 29-32.
  • 26 Chapman HA, Jr. Vavrin Z, Hibbs JB. Jr. Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Cell 1982; 28: 653-62.
  • 27 Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 2001; 86: 324-33.
  • 28 Kukkonen M, Korhonen TK. The omptin family of enterobacterial surface proteases/adhesins: from housekeeping in Escherichia coli to systemic spread of Yersinia pestis. Int J Med Microbiol 2004; 294: 7-14.
  • 29 Lahteenmaki K, Edelmann S, Korhonen TK. Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 2005; 13: 79-84.
  • 30 Pancholi V, Fischetti VA. α-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 1998; 273: 14503-15.
  • 31 Coleman JL, Roemer EJ, Benach JL. Plasmincoated Borrelia burgdorferi degrades soluble and insoluble components of the mammalian extracellular matrix. Infect Immun 1999; 67: 3929-36.
  • 32 Lahteenmaki K, Virkola R, Pouttu R. et al. Bacterial plasminogen receptors: in vitro evidence for a role in degradation of the mammalian extracellular matrix. Infect Immun 1995; 63: 3659-64.
  • 33 Timpl R. et al. Laminin-a glycoprotein from basement membranes. J Biol Chem 1979; 254: 9933-7.
  • 34 Wani JH Gilbert JV, Plaut AG. et al. Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae . Infect Immun 1996; 64: 3967-74.
  • 35 Bethe G, Nau R, Wellmer A. et al. The cell wall-associated serine protease PrtA: a highly conserved virulence factor of Streptococcus pneumoniae . FEMS Microbiol Lett 2001; 205: 99-104.
  • 36 Sebert ME, Palmer LM, Rosenberg M. et al. Microarray- based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH twocomponent system and contributes to nasopharyngeal colonization. Infect Immun 2002; 70: 4059-67.
  • 37 Blue CE, Paterson GK, Kerr AR. et al. ZmpB, a novel virulence factor of Streptococcus pneumoniae that induces tumor necrosis factor alpha production in the respiratory tract. Infect Immun 2003; 71: 4925-35.
  • 38 Oggioni MR. et al. Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol Microbiol 2003; 49: 795-805.
  • 39 McClintock DK, Bell PH. The mechanism of activation of human plasminogen by streptokinase. Biochem Biophys Res Commun 1971; 43: 694-702.
  • 40 Paoni NF, Castellino FJ. A comparison of the urokinase and streptokinase activation properties of the native and lower molecular weight forms of sheep plasminogen. J Biol Chem 1979; 254: 2064-70.
  • 41 Kukkonen M. et al. Protein regions important for plasminogen activation and inactivation of α2-antiplasmin in the surface protease Pla of Yersinia pestis. Mol Microbiol 2001; 40: 1097-111.
  • 42 Mangel WF. et al. Characterization of an extremely large, ligand-induced conformational change in plasminogen. Science 1990; 248: 69-73.
  • 43 Montemurro P. et al. Retinoic acid stimulates plasminogen activator inhibitor 2 production by blood mononuclear cells and inhibits urokinase-induced extracellular proteolysis. Br J Haematol 1999; 107: 294-9.
  • 44 Fuchs H. et al. The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natl Acad Sci USA 1994; 91: 12594-8.
  • 45 Kuusela P, Ullberg M, Saksela O. et al. Tissue-type plasminogen activator-mediated activation of plasminogen on the surface of group A, C, and G streptococci. Infect Immun 1992; 60: 196-201.
  • 46 Sodeinde OA. et al. A surface protease and the invasive character of plague. Science 1992; 258: 1004-7.
  • 47 Rijneveld AW Florquin S, Bresser P. et al. Plasminogen activator inhibitor type-1 deficiency does not influence the outcome of murine pneumococcal pneumonia. Blood 2003; 102: 934-9.
  • 48 Deitcher SR, Eisenberg PR. Elevated concentrations of cross-linked fibrin degradation products in plasma. An early marker of gram-negative bacteremia. Chest 1993; 103: 1107-12.
  • 49 Parkkinen J, Hacker J, Korhonen TK. Enhancement of tissue plasminogen activator-catalyzed plasminogen activation by Escherichia coli S fimbriae associated with neonatal septicaemia and meningitis. Thromb Haemost 1991; 65: 483-6.
  • 50 Gladysheva IP, Turner RB, Sazonova IY. et al. Coevolutionary patterns in plasminogen activation. Proc Natl Acad Sci USA 2003; 100: 9168-72.
  • 51 Sun H, Ringdahl U, Homeister JW. et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 2004; 305: 1283-6.