Dear Friends,

On behalf of the National Center for Natural Products Research, School of Pharmacy, and the University of Mississippi, we would like to welcome you to our conference entitled "8th International Conference on the Science of Botanicals" This conference is supported through a cooperative agreement between the NCNPR and the Center for Food Safety and Applied Nutrition (CFSAN) of the Food and Drug Administration. Co-sponsors are: CFSAN/FDA, Shanghai Institute of Material Medica/CAS, China; The Council of Scientific and Industrial Research (CSIR-India); the Society for Medicinal Plant Research (GA); Institute of Indigenous Medicine (IIM), Sri Lanka, and the American Society of Pharmacognosy (ASP).

We are excited to present a program featuring a roster of internationally recognized experts and researchers in the field of botanicals. We wish to extend our thanks to our speakers for their willingness to participate in and contribute to the success of the meeting.

We invite you to visit the website of the National Center for Natural Products Research at http://www.pharmacy.olemiss.edu/ncnpr to learn more about our research program. Oxford and the Ole Miss campus are a beautiful setting, and we hope you will get to explore them, especially if this is your first time to visit here. If there is anything we can do to make your visit more enjoyable, please contact us.

Sincerely,

Larry A. Walker, Ph.D.
Director
National Center for Natural Products Research

Ikhlas A. Khan, Ph.D.
Director of FDA Program
National Center for Natural Products Research
Advisory Committee
Alice M. Clark, Ph.D.
Vice Chancellor for Research and Sponsored Programs,
The University of Mississippi
Larry A. Walker, Ph.D.
Director, NCNPR,
The University of Mississippi

Organizing Committee
Rudolf Bauer, Ph.D.
Institute of Pharmaceutical Sciences,
Department of Pharmacognosy,
Karl-Franzens-Universität Graz
Joseph M. Betz, Ph.D.
Office of Dietary Supplements of NIH
Shaw T. Chen, M.D., Ph.D.
Associate Director, ODE-V, CDER, FDA
Steven Dentali, Ph.D.
Vice President, Scientific and Technical Affairs,
American Herbal Products Association
De-an Guo, Ph.D.
Director, Shanghai Research Center for TCM Modernization,
Shanghai Institute of Materia Medica/CAS
Ikhlas Khan, Ph.D.
Director of FDA Program, Assistant Director NCNPR,
The University of Mississippi
Brigitte Kopp, Ph.D.
Professor of Pharmacognosy,
Department of Pharmacognosy,
University of Vienna, Austria
Steven Musser, Ph.D.
Director, Office of Regulatory Science,
CFSAN, FDA
G. N. Qazi, Ph.D.
CRISM, India
Troy Smillie, Ph.D.
Research Scientist, NCNPR,
The University of Mississippi

Scientific Program Committee
John Cardellina II, Ph.D.
Reeves Group
K. Hüsnü C. Baser, Ph.D.
Professor, Head of the Department of Pharmacognosy,
Anadolu University, Eskisehir, Turkey
Mark Blumenthal
Executive Director, American Botanical Council
Paul Pui-Hay But, Ph.D.
Dept. of Biology and Institute of Chinese Medicine, Chinese University of Hong Kong Shatin, N.T.
Elizabeth M. Calvey, Ph.D.
Team Leader, Liaison and Partnership Team, CFSAN, FDA
Edward Croom Jr., Ph.D.
Adjunct Associate Professor, Pharmacognosy, The University of Mississippi
Stephen J. Cutler, Ph.D.
Chair and Professor of Medicinal Chemistry, The University of Mississippi
Stephen O. Duke, Ph.D.
Research Leader, USDA, ARS, NPURU, NCNPR, The University of Mississippi
Mahmoud A. Elsohly, Ph.D.
Research Professor NCNPR, Professor of Pharmaceutics,
The University of Mississippi
Daneel Ferreira, Ph.D.
Chair and Professor of Pharmacognosy,
The University of Mississippi
Edward J. Fletcher
COO/Botanicals Division, Strategic Sourcing, Inc.
Vasilios (Bill) Frankos, Ph.D.
Director, Division of Dietary Supplement Programs, ONPLDS, CFSAN, FDA
Mahabir P. Gupta, Ph.D.
Director, Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN)
Loren Israelsen, J.D.
Executive Director, United Natural Products Alliance
A. Douglas Kinghorn, Ph.D., D.Sc.
Jack L. Beal Professor and Chair, Division of Medicinal Chem. & Pharmacognosy,
Ohio State University, College of Pharmacy
Susan Manly, Ph.D.
Manager of Discovery Screening and Informatics,
National Autonomous University of Mexico
Rachel Mata, Ph.D.
Department of Pharmacy,
National Autonomous University of Mexico
Robin J. Marles, Ph.D.
Director, Bureau of Clinical Trials and Health Science, NHPD, Health Products and Food Branch, Health Canada
James McChesney, Ph.D.
Tapestry Pharmaceuticals, Inc.
Jim Miller, Ph.D.
Dean & Vice President for Science, The New York Botanical Garden
Nicholas Oberlies, Ph.D.
Research Triangle Institute
David S. Pasco, Ph.D.
Assistant Director, NCNPR,
The University of Mississippi
Guido F. Pauli, Ph.D.
Assistant Professor of Pharmacognosy,
University of Illinois at Chicago
Jeanne Rader, Ph.D.
Director, Division of Research and Applied Technology, ONPLDS, CFSAN, FDA
Roy Upton
Executive Director, American Herbal Pharmacopoeia
Aruna Weerasooriya, Ph.D.
Research Scientist, NCNPR, The University of Mississippi

Invited Speakers
A. P. G. Amarasinghe, Ph.D.
Institute of Indigenous Medicine, Sri Lanka
Rudolf Bauer, Ph.D.
University of Graz
Mike Balick, Ph.D.
New York Botanical Garden
Y. S. Bedi, Ph.D.
Institute of Integrative Medicine (CSIR), Jammu Tawi, India
Amy Boileau, Ph.D.
Regulatory and Scientific Affairs, Cargill
Josef Brinckmann
Traditional Medicinals
Paula Brown, M.Sc., MCIC
British Columbia Institute of Technology
Paul Pui-Hay But, Ph.D.
Yunnan Institute of Materia Medica, Yunnan, China
Shi-lin Chen, Ph.D.
Institute of Medicinal Plant Research, China
Wan-sheng Chen, Ph.D.
School of Pharmaceutical Sciences, Second Military University, China
Muhammad Iqbal Choudhary, Ph.D.
University of Karachi, Pakistan
Jinhui Dou, Ph.D.
CDER/FDA
Thomas Effert, Ph.D.
German Cancer Research Center
René Roth-Ehrang, Ph.D.
Finzelberg GmbH & Co. KG
Norman Farnsworth, Ph.D.
Department of Medicinal Chemistry and Pharmacognosy, UIC
Vasilios H. Frankos, Ph.D.
CFSAN/FDA
Gabriel I. Giancaspro, Ph.D.
United States Pharmacopoeia
De-an Guo, Ph.D.
Shanghai Institute of Materia Medica, CAS, China
Pierre S. Haddad, Ph.D.
University of Montreal
Loren Israelsen, J.D.
United Natural Products Alliance
Yi Jiang, Ph.D.
Suzhou Yihua Biomedical Technology Co. Ltd.
Mohammad Kamil, Ph.D.
Zayed Complex of Herbal Research and Traditional Medicine, UAE
Hon. Tissa Karaliyadde
Minister of Indigenous Medicine, Sri Lanka
Rick Kingston, PharmD
SafetyCall™ International
M. W. S. J. Kumari, Ph.D.
Institute of Indigenous Medicine, Sri Lanka
Victoria Kyeuyen
Health Canada Natural Health Products Directorate
A Phase 2 clinical trial with Black Cohosh and Red Clover was conceived in 2000 within our UIC/NIH Center for Botanical Dietary Supplement Research on Women’s Health. Prior to implementing the trial, a Phase 1 study was required and approval from FDA that an IND application was not required since the end point being measured was reduction in hot flashes in menopausal women. Menopause, for purposes of FDA is not considered a disease. The study was delayed for more than a year in order to prepare a botanical that would be interaction with certain serotonin receptors, in vitro. The study preparations had to be formulated and were subjected to accelerated stability studies. During the recruitment of suitable subjects the results of the WHI (Women’s Health Initiative) caused difficulty in the ability to recruit suitable women since the study had four arms, i.e. Black Cohosh, Red Clover, Placebo and Prempro and many women were reluctant to enter the trial if there was a possibility that there would be taking Prempro. Because of this, only 88 subjects were recruited of the 128 initially planned. However, the study was powered sufficiently if the dropout rate was less than 15%. In the final analysis, Red Clover was shown to positively affect cognition but neither test preparation reduced hot flashes. A discussion of these results will be presented.

Ethnobotany, Traditional Medicine and Dietary Supplements:

Research Priorities and Lessons to be Learned
Balick MJ
1 Institute of Economic Botany, The New York Botanical Garden, Bronx, New York 10458, U.S.A.

There are estimated to be 420,000 species of higher plants on earth, about half of which are found in the tropics. Over millennia, people have learned to use plants to sustain their lives. Ethnobotany is a science that studies the relationship between plants, people and traditional culture. This presentation discusses the study of plants used in traditional healing, with examples from Belize, Central America, the Pacific Island region of Micronesia, and New York City by a Dominican immigrant community. Traditional knowledge in many parts of the world, including our own, has “devolved,” or disappeared when its practitioners die without teaching the knowl- edge to the next generation. The implications of this for natural products research and development and safe and proper use of new plant species as dietary supplements will be discussed. Herbs used by traditional peoples have been subjected to many genera- tions, even centuries of trial and error experimentation, and there is much that these people can teach us about their efficacy and use. Ethnobotanical knowledge can be of great value in addressing con- temporary issues in supplement and drug development, public health and sustainable resource use and conservation. However, in seeking to fulfill this potential, scientists find themselves in a race against time, with both habitats being destroyed and indigenous knowledge about the uses of the plants and their environment rapidly being lost. There are ways to reduce this destruction of humanity’s collective wisdom before it is too late.

Known Natural Products with Unknown Bioactivity
Swagoher S’, Rollinger JM’, Stuppern H’
1 Institute of Pharmacy/Pharmacognosy, University of Innsbruck, 6020 Innsbruck, Austria

To date more than 170,000 natural compounds [1, 2] are published. The main part of these compounds belongs to secondary metabo- lites, which provide living systems with their characteristic fea- tures mandatory for surviving. They contain an inherently large-scale of structural diversity. About 40% of the chemical scaffolds of published natural products (NPs) are unique and have not been synthesized by any chemist [3]. Accordingly, a large number of drug leads and hits are conserved in the inexhaustible pool of NPs pre- screened by evolution. But how to dig out and to recognize the re- spective drug leads is a challenging task. Although a random selec- tion of plant materials seems not to be a very efficient strategy for the discovery of new biologically active compounds, many today well-known natural drug leads are based on a serendipitous finding. An example of a successful random study will be presented from our laboratory, which has recently resulted in the identifica- tion of isogentisin, a secondary metabolite of *Gentiana lutea* L., as a novel compound for the prevention of smoking-caused endothelial injury [4]. A more rationalized access to bioactive compounds is offered by in silico tools e.g. pharmacophore-based virtual screening, docking experiments and the parallel screening concept. Screening of compounds against a set of models representing a large number of targets aims to predict the pharmacological profiles of these molecules including desirable activities and undesirable effects. In this presentation an example of an application employing a virtual parallel screening approach with a collection of 2208 in-house generated pharmacophore models on constituents of the aerial parts of the medicinal plant *Ruta graveolens* L. will be illustrated [5]. References: [1] Dictionary of Natural Products provided by Chapman & Hall/CRC: http://www.chemnetbase.com/tours/dnp/index.html. [2] Tulp M, et al. (2005) Bioorg. Med. Chem., 13: 5274–5282. [3] Henkel T, et al. (1999) Angew. Chem. Int. Ed., 38: 643–647. [4] Schmieder A, et al. (2007) Atherosclerosis, 194: 317–325. [5] Rol- linger JM, et al. (2009) Planta Med. in press.

Antimalarial Agents from Plants:

Neocryptolepine Derivatives and Standardised Extracts from Traditional Medicine
Pieters L’
1 Laboratory of Pharmacognosy and Pharmaceutical Analysis, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium

Plants are still an important resource for the discovery of new drugs, such as new antimalarial agents. In search for novel antima- larial compounds, we focused on neocryptolepine (5-methyl-5H- indolo[2,3-b]quinoline), one of the minor alkaloids of *Cryptolepis sanguinolenta*, a plant used in traditional medicine in Central and West Africa. A series of chloro- and aminooxylamino-substituted neocryptolepine derivatives were synthesized and evaluated as antiplasmodial agents. The evaluation included cytotoxicity (MRC5 cells), inhibition of heme formation and DNA-interac- tions (DNA/methyl green assay). Introduction of aminooxylamino-chains increased the antimalarial activity of the neocryptolepine core substantially. The most active compounds showed antimal-arial activities in the nM range. Nevertheless, some compounds that were selected for in vivo evaluation in infected mice were not sufficiently active, or toxic to the animals. A different approach to develop antimalarial drugs from nature is the standardisation of plant extracts with a proven efficacy used in traditional medicine. *Nauclea pobebeguini* (Rubiacceae) is a tree from which the bark is widely used in African traditional medicine against malaria-like symptoms. Alkaloids such as the major compound strictosamide are expected to be responsible for the activity. An HPLC method was developed and validated for the quantification of stric- tosamide in an 80% EOH extract of the stem bark of *N. pobebeguini*. This extract, containing 5.6% (w/w) strictosamide, was evaluated in vivo in the *Plasmodium berghei* mouse model in a suppressive treatment regimen. It was orally dosed (PO) at 300 mg/kg × 2/day during 5 consecutive days. Another group was treated intraperitoneally (IP) at 50 mg/kg using the same dosing regimen. Treatment with the crude extract, either after oral or intraperitoneal dosing, resulted in moderate depression of parasitaemia during dosing, however quickly followed by a full relapse (mean survival time = about 13 days). At termination of the experiment at day 21, a single survivor in the PO group was apparently cured (no parasitaemia), the single survivor in the IP group showed high parasitaemia and was in a moribund state. It can be concluded that the crude extract of *N. po- bebeguini* has slight antimalarial potential when administered orally in a suppressive dosing regimen of 2 × 5 days at 300 mg/kg. Longer treatment may be necessary.
Triterpenoids as Anti-inflammatory Compounds of Natural Origin

S-8

Varavets T1, Rouis M1, Simmet T1

1 Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Helmholtzstr. 20, D-89081 Ulm, Germany

Despite the progress in understanding the molecular mechanisms underlying chronic inflammation, the current treatment options are not satisfactory. The transcription factor NF-κB, a key player in the development and progression of chronic inflammation, is considered a promising target for therapeutic intervention. In Ayurvedic medicine, extracts from the oleogum resin from Boswellia serrata are being used as anti-inflammatory remedies. After purification to chemical homogeneity, we have identified a number of pentacyclic triterpenoids including acetyl-boswellic acids (ABAs). Using LPS as an activator of human monocytes, we found that ABAs inhibit NF-κB signaling. We identified specific inhibitory effects on IκB kinase (IKK), which is pivotal for the degradation of the NF-κB inhibitor IκB, as well as the phosphorylation of p65, two steps essential for NF-κB activation and the subsequent cytokine expression. Using active human recombinant IKKα and IKKβ, we positively confirmed the direct effect of the ABAs on the IKK complex. We further studied the effects of systemically applied AKβBα in the development of atherosclerotic lesions in apolipoprotein E-deficient (apoE−/−) mice. Atherosclerotic lesion formation was accelerated in those animals by weekly intraperitoneal lipopolysaccharide (LPS) injections. LPS alone increased the atherosclerotic lesion size by two-fold and treatment with AKβBα significantly reduced it by about 50%. Daily treatment of the mice with AKβBα potently inhibited the NF-κB activation in atherosclerotic plaques and led to significant down-regulation of several NF-κB-dependent genes such as MCP-1, MCP-3, IL-1α, MIP-2, VEGF and TF. By contrast, AKβBα did not affect the plasma concentrations of triglycerides, total cholesterol, and various subsets of lymphocyte-derived cytokines. Thus, the inhibition of NF-κB signalling by constituents of the oleogum resins from Boswellia species might represent an alternative for conventional treatments of chronic inflammatory diseases such as atherosclerosis.

Acknowledgements: This work was supported by the Deutsche Krebshilfe.

Antidepressant New Herbal Product Development

Wang EZ, Jiang Y1

1 Suzhou Yi-hua Biomedical Technology Co. Ltd, PRC

Depression related disorders are among the most common psychiatric disorders that affect all age groups of the general population. Currently, the preferred treatment is with pharmacological drugs that have antidepressant or anti-anxiety properties. However, these synthetic antidepressants have numerous and often serious adverse effects, including impaired cognition, ataxia, aggression, sexual dysfunction, tolerance dependence and so on. Withdrawal reactions on termination after long-term administration are also a major limiting factor in the use of these agents. Herbal remedies, for example St. John’s wort (Hypericum perforatum) or Kava has recently gained popularity as an alternative treatment for mild to moderate depression. Excitingly, we have discovered a medicinal plant named ADP, Chinese traditional medicine, used for inflammation and rheumatic conditions. Its extracts showed significantly antidepressant effect, and minor analgesic, tranquilizing actions, simultaneity, without exciting effect. We believe that it could soon become “Chinese St. John’s wort". Pharmacodynamics-experiment (positive control is fluoxetine and Venlafaxine) showed the curative dose of ADP for mouse E50= 4.56 mg/kg (FS50= 2.59 mg/kg (TST); rat E50= 1.85 mg/kg (FST). Acute-toxicity-experiment showed its LD50 values > 500 mg/kg i.g. Long-term-toxicity-experiment ADP was safety. The safe index of ADP for mouse is LD50/ED50 = 152–162 (TST) (Fluoxetine’s LD50/ED50=62). The in vitro test and the mechanism of action test indicate that ADP obtained through the method for this invention has prominent (re) uptake inhibiting effect on noradrenaline (NA) and/or 5-hydroxytryptamine (5-HT), and when compared with the extract prepared by using the existing reflex method, it has the advantages of increasing the alkaloid content and the biological activity of the extract. Therefore, ADP may serve as the noradrenaline and/or 5-hydroxytryptamine and/or dopamine (re) uptake inhibitor for development into antidepressant drug, anti-anxiety drug, sedative hypnotic, and anti-senile dementia drug. By now, we have executed 2 applications for China invention patents and authorized by Chinese Patent Bureau (ZL03115911.7; ZL200410084791.7). Meanwhile, we have executed 1 PCT application at 2005, and entered into U.S.A, Japan, Canada, Korea, India, Russia and European Union from 2007(WO2006/058487 A1).

The test drug Rathakalka, selected for these studies, is a popular Sri Lankan indigenous medical recipe specially used for children. A clinical study of the Rathakalka recipe revealed significant changes in serum immunoglobulins (IgG, IgM, and IgA) and serum comple-ments (C3, C4) levels in infants and young children. Animal experiments with albino rats showed its highest anti-inflammatory activity and rheumatic conditions. Its extracts showed significantly improved clinical study of the Rathakalka recipe revealed significant changes in serum immunoglobulins (IgG, IgM, and IgA) and serum complement proteins (C3, C4) levels in infants and young children. Animal experiments with albino rats showed its highest anti-inflammatory effect, anti-bacterial effect, anti-pyretic effect, anti-inflammatory effect and rheumatic conditions. Its extracts showed significantly improved activity, non toxicity, and microbiological safety in Rathakalka.

Acknowledgements: Thanks to the support and advice given by Prof. S. Widanapathirana, Prof. R.D. Sharma, Prof. Premawathi Tevar, Prof. Manjari Dwivedi, Dr. Usha Singh, Dr. N.C.Arya, Dr. B.M. Nageeb and all other co-researchers, and the financial grant from Link Natural Pharmaceuticals, and National Science Foundation, Sri Lanka, to carry out this research study.

Scientific Studies of a Popular Sri Lankan Indigenous Therapeutic Agent Rathakalka Used in Pediatric Practice

Amarasinge APC1

1 Institute of Indigenous Medicine, University of Colombo, Rajagiriya, Sri Lanka

The test drug Rathakalka, selected for these studies, is a popular Sri Lankan indigenous medical recipe specially used for children. A clinical study of the Rathakalka recipe revealed significant changes in serum immunoglobulins (IgG, IgM, and IgA) and serum comple-ments (C3, C4) levels in infants and young children. Animal experiments with albino rats showed its highest anti-inflammatory activity 3 hours after induction of edema. In-vivo experiment demonstrated that Rathakalka reduced yeast induced elevation of the body temperature in rats. In-vivo experiment revealed that the extract has anti-bacterial effect on Staphylococcus aureus, Pseudo-monas aeruginosa, and Listeria monoytogenes. In-vivo experiment showed that the prolonged administration does not produce any toxicity changes in rabbits. Microbiological study indicated that the microbial colony counts observed in this study were with in the limits acceptable by the World Health Assembly (W.H.A.). These results scientifically validate that the drug samples are tested and deemed microbiologically safe and up to the microbial quality standards. These studies confirmed the presence of immune enhancing effect, anti-bacterial effect, anti pyretic effect, anti-inflammatory effect, non toxicity, and microbiological safety in Rathakalka.

Acknowledgements: Thanks to the support and advice given by Prof. S. Widanapathirana, Prof. R.D. Sharma, Prof. Premawathi Tevar, Prof. Manjari Dwivedi, Dr. Usha Singh, Dr. N.C.Arya, Dr. B.M. Nageeb and all other co-researchers, and the financial grant from Link Natural Pharmaceuticals, and National Science Foundation, Sri Lanka, to carry out this research study.

Quality Control and Standardisation of Botanicals – From Cultivation of Medicinal Plants up to its Clinical Application

Kamil M1, Naji MA

1 Zayed Complex For Herbal Research & Traditional Medicine – WHO Collaborative Centre, DPH & P-Health Authority Abu Dhabi, P.O. Box: 29300, Abu Dhabi, United Arab Emirates

In the recent years with ever growing commercialization in the field of herbal medicines, there has been an instant demand for quality control of the drugs used in this system. In the present paper an attempt has been made for a sequential study of the quality control protocols for the herbal medicinal products from selection of medicinal plants, good agricultural practices, cultivation, good field collection practices, source and period of collection, identification and authentication, storage, chemical standardization, assay, good manufacturing practices, pre clinical studies up to clinical approach, with special reference to maintain standardization at all stages. Besides the above protocols, this study deals with approaches towards establishing the quality and safety – starting from preliminary examination of the botanicals, inadvertent con-
Effect of Polysaccharides on Enteric Mucosal Immune Response in Rats

Liu AP1,2, Zhang WD1, Chen SL2
1 Institute of Basic Theory, China Academy of Traditional Chinese Medicine, Beijing 100700, China
2 Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Shenzhen 518057, China

The effect of ginseng polysaccharide and Polyporus umbellatus polysaccharide on T-lymphocytes in enteric mucosal lymphocytes in rats, including healthy rats, those with collagen induced arthritis, and with C26 colon carcinoma were explored. For this study peripheral blood mononuclear cells (PBMC), peyer’s patch lymphocyte (PPL), intraepithelial lymphocyte (IEL), and lamina propria lymphocyte (LPL) of SD rats were isolated. These lymphocytes were co-cultured with ginseng polysaccharide and Polyporus umbellatus polysaccharide in different dosages. The TNF-α and IFN-γ in supernatants were measured with ELISA. Ginseng polysaccharide and Polyporus umbellatus polysaccharide can regulate the level of TNF-α and IFN-γ in the supernatant of PBMC and PPL; Polyporus umbellatus polysaccharide can decrease the level of TNF-α and IFN-γ in supernatant of IEL; Ginseng polysaccharide and Polyporus umbellatus polysaccharide can regulate the function of lymphocytes in the enteric mucosal immune system.

Eliminating Analytical Ambiguity in the Scientific Study, Development and Quality Control of Natural Health Products and Dietary Supplements

Brown PN1
1 Integrative Bioscience Research Cluster, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, British Columbia, V5H 3H2, Canada

Traditional Knowledge Guided Research to Identify Legitimate Substitutes for Rare and Unavailable Herbs

Venkatasubramanian PN1, Subrahmanya Kumar K1
1 Foundation for Revitalisation of Local Health Traditions (FRLHT), 74/2 Jarakabande Kaval, Attur Post, via Yelahanka, Bangalore 560064, India

As per the principles and practice of Ayurveda, herbs with similar pharmacological properties can be used as substitutes whenever the original herb is in short supply. There are at least 30 pairs of herbs and substitutes that are mentioned in classical Ayurveda texts [1]. Cyperus rotundus L. (Cyperaceae) is claimed to be a legitimate substitute for Aconitum heterophyllum Wall. ex Royle (Ranunculaceae). A. heterophyllum is a rare and expensive Himalayan herb while C. rotundus is a common, tropical, marshy weed. Going by published literature, the two herbs are taxonomically unrelated and dissimilar in major chemicals. However, our preliminary studies indicate that the chromatographic profiles [2] and pharmacological (anti-diarrhoeal) activity are similar in the two drugs making further exploration worthwhile. Research of this kind is essential to identify new substitutes for unavailable herbs and to throw light on the Ayurvedic strategy adopted for selecting substitute drugs. Acknowledgements: Thanks go to Al-Ameen College of Pharmacy for conducting the animal studies. Financial support from the TATA Trusts is gratefully acknowledged. References: [1] Sastri, B (Ed.) (2002) Yogaratnakara, Chaukhamba, Sanskrit Sansthan. Varanasi, p.171. [2] Shankar, D. et al. (2007) Curr Sci, 92(11): 1499–1505.

Metabolomics for Discovery of Novel Medicinal Compounds

March SJ1
1 University of British Columbia Okanagan, Kelowna, British Columbia, Canada

Plant tissues have complex chemical profiles consisting of both primary metabolites required for growth and development and secondary metabolites that enable the plant to sense and adapt to changing conditions. The products of plant secondary metabolism are a rich resource for discovery of new medicines but traditional methods of discovery such as bioassay-guided fractionation are expensive and time-consuming while some plant-based treatments rely on synergy between several compounds for full biological effect. Metabolomics is the study of the whole complement of small com-

pounds in a biological sample and recently, this technique has been used to discover novel, medicinally active phytochemicals in traditional plant-based medicines. The overall objective of the Medicinal Plant Metabolomics research program is to assess the capacity for compound discovery by mass spectrometry and NMR-based metabolomics technologies and to quantitatively compare metabolites specific to individual medicinal plants. An extract of a single leaf of St. John’s wort (Hypericum perforatum L.) has been found to contain more than 4,200 individual compounds. A simple cup of coffee from a commercial retailer can contain between 8,000–10,000 distinct phytochemicals. Efforts to understand this phytochemical complexity and to develop models for study of chemodiversity form the foundation of future research in compound discovery, medicinal plant development and optimized diets.

This presentation will introduce a systemic strategy and relative technologies for the quality evaluation of Traditional Chinese Medicine (TCM), including the identification and differentiation of botanicals and also the quality standard of TCM products. The emphasis will focus on the quality control of manufacture of TCM products, especially to introduce an application of NIRS online analytical technique and quality-based control system into the extraction procedure of TCM. The system hardware was composed of the extraction equipment, the online sample pre-treatment subsystem, the NIRS subsystem, the online NIRS analysis and intelligent control subsystem, and the automatic control subsystem. A diagram of the system is shown in Fig. 1. The whole system includes cooperative-working hardware and software components. The extraction process of TCM was analyzed using online NIRS, and the results demonstrated that NIRS was feasible to be applied to online monitoring and controlling in the manufacturing of TCM. Based on the online NIRS analysis technology, the real-time monitoring of the effective components or indicative components in the extraction procedure, the analysis of the extraction ratios, the diagnosis of the extraction procedure, and the real-time feedback control based on the quality status were actualized.

For cGMP compliance of dietary supplements and quality control of herbal medicinal products, proper identification of herbal raw material is of great importance. In this respect Traditional Chinese Medicines (TCM) can present challenging tasks because pharmacopoeial drug monographs may include multiple species and often don’t provide sufficient analytical methods. High Performance Thin-Layer Chromatography (HPTLC) is a very suitable tool for direct comparison of fingerprints from multiple samples side by side and allows determining similarities and differences of related species. Using “BEIMU” (Fritillaria spp.) and “CANGZHU” (Atractylodes spp.) as examples, the development and use of validated methods for this purpose is illustrated. The traditional approach of associating the quality of an herbal medicine with the quantity of a marker becomes questionable, if the product contains more than one plant material. CANGZHU XIANGLIAN SAN a TCM for veterinary use contains Coptis rhizome, Aucklandia root, and Atractylodes root but the Chinese Veterinary Pharmacopoeia only relies on identification and quantitation of berberin as principal marker. Berberin is present in Coptis only. This creates the possibility for adulterated products, missing either of the other two plants to enter the market. We propose an HPTLC method that allows a more complete monitoring of quality by ensuring the presence of all species in the appropriate quantity.

While screening 60 extracts for their stimulatory activity on proliferation of osteoblast-like cell line and on inhibition of osteoclastic formation, the water extract of Dioscorea spongosoid displayed the strongest stimulation on osteoblastic proliferation and strong inhibition on osteoclastic formation. This water extract was separated using bioassay-guiding fractionation and three new diarylheptanoids were isolated and purified. The structures of three new diarylheptanoids were elucidated by analysis of NMR, IR spectra and high resolution FAB-MS. The relative stereochemistry of diospongins A and B was determined by ROESY spectra and coupling constants in 1H-NMR spectra and their absolute structures were
identified by advanced Mosher method. By analyzing the NMR data, diospongin C was found to be an acyclic diarylheptanoid with four hydroxyl groups at C-1, C-3, C-5 and C-7; i.e., 1,7-dihydroxyheptan-1,3,5,7-tetraol. So there was some difficulty in the decision of its relative and absolute configuration. The relative configuration of diospongin C also can be determined by analysis coupling constants of two protons of C-2, C-4 and C-6 in Newman projections of one corresponding acetonide derivative and optimizing dihedral angles [1]. Its absolute stereochemistry was identified by the CD spectrum of its dibenzoate product [2]. All the three compounds were examined the inhibitory activity on osteoclast formation and bone resorption induced by PTH in bone organ culture system. Except for diospongin A, diospongin B and C showed potent inhibition even at a concentration of 20 µM, which demonstrates that the stereochemistry was important to structure-activity relationship of these diarylheptanoids.

![Structures of diospongin A, B and C.](image)

Fig. 1 Structures of diospongin A, B and C.

S-19

Sourcing of Quality Raw Materials for Indian System of Medicine (ISM) and Botanical Drugs

Bedi VS, Dutt HC

1 Institute of Integrative Medicine (CSIR), Canal Road, Jammu, India

Globally, there has been an unparalleled growth in the plant-derived medicinally useful formulations, drugs and health care products, with annual growth rates between 10–20% in most of the countries. According to WHO, the international market of herbal products is estimated to be US$ 62 billion which is poised to grow to US$ 5 trillion by the year 2050. This has attracted many large pharmaceutical and consumer product companies worldwide to have herbal/botanicals in their product portfolio. India is an exception to it and has a competitive edge as Indian Traditional pharmaceutical and consumer product companies worldwide to have herbal/botanicals in their product portfolio. India is an exception to it and has a competitive edge as Indian Traditional drugs/products, have their roots in time tested systems of medicine namely, Ayurveda, Unani and Siddha. Renewed interest in botanical products has resulted into a huge international trade in raw plant material, feeding a range of such industries, including the $20 billion botanical medicine market. Presently between 75 and 85% of the raw materials for the botanical industry are sourced from wild. Due to the increasing public demand for quality botanical products, some companies are now making efforts to acquire at least a portion of their raw material from sustainable and ethical sources, but most invest little in this side of their business. The existing industry practice often promotes poor management of species and few benefits for the collectors and cultivators, and many companies remain distant and unaware of the conditions under which raw materials are sourced. However, there also exist opportunities to create change in this sector. The source and quality of raw materials, storage, post-harvest handling play a pivotal role in guaranteeing the quality and stability of ISM & botanical preparations. In India, in addition to the promotion of cultivation of medicinal and aromatic plants (MAPs) by certain government departments and R&D institutes, of late some private herbal drug industries have also started sourcing their requirement of herbal raw material from cultivated sources. The cultivation of MAPs, on the other hand, would not only lead to better control over quality of the end products but will also reduce anthropogenic stress on wild stands. The presentation will illustrate the efforts being made in India and in the Indian Institute of Integrative Medicine (IIIM – CSIR) in particular for the sourcing and sustainable supply of raw materials for ISM & Botanical industry.

S-20

The CIHR Team in Aboriginal Antidiabetic Medicines: A Community-Based Collaborative Approach Uniting Healers and Biomedical Scientists to Validate Cree Traditional Medicine

Haddad PS

1 CIHR Team in Aboriginal Anti-diabetic Medicines, Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada

Obesity and Type 2 diabetes are considered as global epidemics by the WHO. Aboriginal populations such as the Cree of Eeyou Istchee (James Bay area of northern Quebec) are particularly affected and suffer greater complications, in part because of the cultural inadequacy of modern pharmaceutical therapies. A multidisciplinary team was therefore put together to explore the antidiabetic potential of Boreal forest plants stemming from Cree Traditional Medicine (TM). The team is composed equally of scientists with expertise in botany, phytochemistry, nutrition, pharmacology, biochemistry, toxicology and clinical endocrinology as well as Cree Elders and members of various Cree health-related institutions, notably including the Cree Board of Health and Social Services of James Bay (CBHSSJB). A novel ethnobotanical approach based on diabetes symptoms was used to identify potential antidiabetic plants. A total of 17 species were characterized phytochemically and screened for primary and secondary antidiabetic activity, toxicological potential and mode of action using a comprehensive platform of bioassays. Most promising species were subjected to bioassay-guided fractionation to identify active principles. Bioavailability as well as anti-hyperglycemic and anti-obesity efficacy are then confirmed using in vivo animal models of obesity, insulin resistance or diabetes. Clinical studies are also underway to document the safety and efficacy of selected species using a culturally-adapted, all-inclusive, observational protocol. Finally, our project represents a pilot study for the integration of Cree TM into diabetes care for the CBHSSJB. Funded by the Canadian Institutes of Health Research.

S-21

Understanding Botanical Dietary Supplements: The Research Need for Well-Charaterized Test Materials – Research Grade Botanicals

Miller JS

1 Dean and Vice President for Science, The New York Botanical Garden

Interpreting research on botanical dietary supplements, and also replicating research from other labs to confirm results, is complicated by the dietary supplements themselves, which are complex chemical mixtures with composition that may vary dependent on the source of the raw materials, processing and formulation, and stability of the final product. All pharmaceutical research requires that the substances being tested be characterized sufficiently so that studies can be interpreted as well as replicated and confirmed by other research groups. The chemical composition of botanical dietary supplements is influenced by a wide variety of factors including identity of the source plant material, geographical origin and environmental factors, methods of harvest and processing, formulation, and age of the processed materials. The influence of these factors is reviewed, recommendations are provided for controlling the effect of each variable, and a means of presenting these research results is presented.
Ayurveda is an essentially authentic practical science and all the fundamental principles ascertain in it have initiated from a philosophical background and passing through the science to accomplish its ultimate goal. The main objective of this research was to test the efficacy of an Ayurvedic botanical formula “Shothahara Compound” via scientific and philosophical approaches considering the Ayurvedic pharmacodynamics. The formula containing six botanicals, Cedrus deodara, Resinus communis, Tinospora cordifolia, Terminalia chebula, Boerhavia diffusa and Zingiber officinalis was selected in the form of dried water-soluble extract. The study was specially planned to evaluate Ayurveda principles in the light of scientific testing by the animal and clinical experiments. The assessment of Dipana Pachana activity, Muthrala activity, Amahara effect, Rasayana effect and Shothahara effect were evaluated by using a food consumption test, effect on fecal output, effect of food conversion ratio, body weight changes, diuretic activity, effect on serum total cholesterol and high-density cholesterol, adoptogenic activity, carrageenan induced hind paw edema in rats and capillary permeability in mice. Charles foster strain albino rats and mice in either sex, bred in animal house of Institute of Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurveda University, Jamnagar, India.

Proteomic method (two-dimensional electrophoresis and MS/MS) was used in studying the mechanisms of Traditional Chinese Medicines (TCMs) including Gastroderma lucidum, Salvia miltiorrhiza, Panax notoginseng and toad venom. For example, the effects of Salvia miltiorrhiza, a TCM popularly used for treating cardiovascular diseases, on the protein expression profiles of platelets, cardiomyocytes and heart tissues were checked. The results indicated that salvinolic acids from Salvia miltiorrhiza could inhibit the aggregation and adhesion of platelets, migration of cardiomyocytes and could protect cardiomyocytes from ischemia-reperfusion injury both in vitro and in vivo. The effects of salvinolic acids might be based on regulation of expression of proteins related to calcium ion binding, cell skeleton structure, elimination of reactive oxygen species, response to stress, etc. Furthermore, combined effects of salvinolic acids and notoginsenosides, a TCM formula were also studied. The proteomic results showed that, in adjusting the un-normal protein expression profiles caused by ischemia-reperfusion injury back to normal, Fufang had better effect than either salvianolic acids or notoginsenosides. Our results indicated the usefulness of proteomic technology in TCM research.

The drug and pharmaceutical industry is one of the most rapidly growing and R&D intensive industries in the world. The search for new therapeutic agents and drugs from natural sources, such as plants, received a boost in the recent past due to increased awareness of side effects and toxicity associated with the allopathic drugs, coupled with the belief that botanicals products are green and more acceptable to humans. India, being the fertile ground of several medicinal systems, has given birth to a multitude of medicinal practices, some of them have survived with intact traditional knowledge. The rich Indian heritage associated with prevailing healing practices led to the identification of several medicinal plants and formulations that were traditionally used for curative purpose. Botanicals, as a source of small molecules with a view to identify new therapeutic agents, remains as one of the major developmental as well as academic activities pursued by several institutes and universities in the post independent era in India. However, the resurgence of natural products in the last decade has also forced the participation of private industry in this race. Though Indian contribution in the area of therapeutics agents, may it be a single molecule or standardized botanical preparations, have been far and few. Yet some of the leads generated have been noticed globally and developed into useful products. The present review will cover some of the past and recent efforts made by various agencies in the development of new leads or therapeutics in the Indian context. It will also include the research and development work being carried out at the Indian Institute of Integrative Medicine at Jammu.

DNA barcoding has been proposed as a novel and powerful taxonomic tool [1,2]. The universal primer COI has been widely applied in animals, but there is no such universal barcode for plants [3]. In this study, we examined the possibility of utilizing DNA barcode markers to identify labiatae medicinal herbs. First, we compared sequences of eight potential barcodes (Acc rDNA, rpb8, rpoC1, ycf1, rbcL, PsbA-trnH, ITS, and matK) among different species of labiatae. Our findings were as follows: (1) PsbA-trnH was amplified much easier than the other seven; (2) PsbA-trnH spacer is one of the most variable non-coding regions of the plastid genome in labiatae; and (3) Different species of labiatae can be differentiated effectively by comparing the PsbA-trnH intergenic region. Comparison of PsbA-trnH intergenic region among 71 species of 30 genus has provided solid and practical evidence for applying DNA barcoding on species identification. In summary, DNA barcoding was proven to be useful in identifying different species of labiatae medicinal herbs. Acknowledgements: Thanks go to the International Cooperation Program of Science and Technology (No. 2007DFA30990) and the Special Founding for Healthy Field (No. 200802043), for supporting the study. References: [1] Schindel DE, Miller SE (2005) Nature, 435: 17. [2] Miller SE (2007) PNAS, 104: 4775–4776. [3] Lahaye R, et al. (2008) PNAS, 105: 2923–2928.
Implementation of Sustainability Standards that Contribute to Assurance of Pharmacopoeial Quality of Wild Collected Medicinal Plants

Brinckmann JA

1 Traditional Medicinals, Research and Development Department, 4515 Ross Road, Sebastopol, California, USA

The majority of commercially traded medicinal and aromatic plant species are wild collected as opposed to being produced through controlled cultivation. In order to assure a consistent supply of uniform botanical raw materials of defined pharmacopoeial quality, long-term relationships, planning, technical cooperation and transparency are necessary throughout the supply chain between the wild collection firms, the intermediate buyers and processors, and the end-user finished product manufacturers.

What Will Happen When...? But PF1,2,4, Show PC2,3 Ling KH1, Chan PWH1

1 Food and Drug Authentication Laboratory, Department of Biology.
2 Department of Biochemistry, and
3 Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P.R. China
4 Yunnan Institute of Materia Medica, Yunnan, P.R. China

What will happen? When everyone is excited with the tempo of modernization and globalization of an indigenous medical system, when new findings and inventions are making the headlines, when business in herbal trade is booming, and when patients are converted to believe in the salvation power of herbalism...but botanicals are not properly grown, handled, processed, manufactured and traded? When plant and animal populations in the wild are dwindling down due to over-exploitation, when endangered species are illegally poached for herbal preparations, when botanicals are substituted by threatened taxa, what will happen? When farming of medicinal plants is fragmentary making it difficult to ensure quality consistence, when mercury is fumed into a botanical to increase its weight for a higher price, when flour is mixed into an herb to make it twice as large for a better sale, when processing and manufacturing procedures are reduced to save expenses regardless of toxin concentrations, what will happen? When prices of botanicals are fixed and investments of talents and financial inputs cannot be recovered, when regulatory agencies can be bribed, when advertisements merge with con artist, what will happen? The answer, my friend, is glowing in the science, the economics and the politics.

From the Bench to the Bedside: How Natural Products Can Find Their Way From the Bench to the Bedside: How Natural Products Can Find Their Way

Efferth T1

1 German Cancer Research Center, Pharmaceutical Biology (C015), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, e-mail: t.efferth@dkfz.de

Reference substances are used to calibrate and validate the testing methods that are applied within the framework of quality control throughout all of the stages in the production and manufacture of herbal products. The quality of these reference substances is therefore of prime importance to the quality and associated safety and efficacy of these products. Manufacturers of herbal drugs, and dietary supplements in particularly, are now also being confronted with a strong increase in the regulations that apply to the reference substances used to analyze their products. While the legal framework and detailed requirements for evidence of quality are clearly regulated for herbal medicinal products these have not yet been defined to the same extent for dietary supplements. However, as health-promoting functions and effects are being claimed to an increasing extent for such products, we must expect the requirements for evidence of their quality to be tightened up as well. This has already taken place in the USA with the introduction of the cGMP for dietary supplements in June 2007. The presentation will focus on the requirements for the analytical characterization of primary reference substances. The necessity to determine not only organic impurities but also water, residual solvents and inorganic impurities will be illustrated by presenting a number of examples of common compounds such as hypericin, hyperforin, hyperoside, silibin and others and by pointing out the crucial points encountered during the establishment, documentation and maintenance of these reference substances. Alternatives, such as quantitative NMR for content assignment of reference substances will be discussed as well.

The main aim of the Chinese Pharmacopoeia (ChP 2010 version) is to build up a quality controlling module that is in accordance with the characteristics of TCMs and is different from that of chemical medicines. It will change gradually from using single ingredient into using active, multiple ingredients, fingerprint or bio-determination to totally control the quality of TCMs. For the safety control of TCMs, the species of pesticides were determined examining the pesticides residues according to the actual utility of chemical pesticides, while the sweet components are more precisely known as steviol glycosides. Long-standing questions about the specifications or characterization of the materials, safety, and special population effects have previously prevented steviol glycosides from being considered a mainstream natural sweetener. In order to provide the answers as well as bridge to the safety gaps, a strategic step-wise, research program was undertaken. Essential elements of the program included: complete characterization of the ingredient, general and reproductive toxicology, metabolism and pharmacokinetic analysis, clinical research, intake/exposure assessment, assurance of appropriate GMP to support specifications, and stability in food systems. A holistic approach to the communication of technical and scientific supporting data was used to ensure general recognition of safety by qualified individuals (GRAS). Efforts are ongoing to promote consistent quality standards within the industry, and to provide due diligence with respect to safety from the post-marketing perspective.

Stevia is a generic term for extracts from the herb Stevia rebaudiana (Bertoni), while the sweet components are more precisely known as steviol glycosides. Long-standing questions about the specifications or characterization of the materials, safety, and special population effects have previously prevented steviol glycosides from being considered a mainstream natural sweetener. In order to provide the answers as well as bridge to the safety gaps, a strategic step-wise, research program was undertaken. Essential elements of the program included: complete characterization of the ingredient, general and reproductive toxicology, metabolism and pharmacokinetic analysis, clinical research, intake/exposure assessment, assurance of appropriate GMP to support specifications, and stability in food systems. A holistic approach to the communication of technical and scientific supporting data was used to ensure general recognition of safety by qualified individuals (GRAS). Efforts are ongoing to promote consistent quality standards within the industry, and to provide due diligence with respect to safety from the post-marketing perspective.
Arsenic is present in the environment in both organic and inorganic forms. While organic arsenicals are generally considered to have very low toxicity, the inorganic species is widely recognized as a carcinogen in addition to causing numerous other adverse health effects following acute or chronic exposure [1, 2]. The tolerance limit for arsenic as a contaminant in natural health products (NHPs) currently recommended by Health Canada’s Natural Health Products Directorate (NHPD) is 0.14 μg/kg body weight/day [3]. However, this limit represents total arsenic and does not distinguish between organic and inorganic arsenical compounds. Consequently, this current limit may be unnecessarily restrictive for the NHP industry as certain products may contain high levels of relatively non-toxic organic arsenic forms, but only minimal amounts of the toxic inorganic arsenic. NHPD investigated this issue in order to determine whether there is substantial scientific evidence to support separate limits for inorganic and organic derivatives of arsenic, and whether suitable analytical methodology exists to distinguish between these forms in finished NHPs. The review involved assessing arsenic toxicity, analytical methodology, and exposure scenarios for natural ingredients used in dietary supplements (e.g. kelp). NHPD recommends maintaining the current tolerance limit of 0.14 μg/kg bw/day for total arsenic in NHPs at the finished product stage. However, if total arsenic content in a particular NHP exceeds the current tolerance limit of 0.14 μg/kg bw/day (taking into account dosage and subpopulation), the applicant may undertake additional arsenic speciation testing to demonstrate that inorganic arsenic consumed by ingesting the product would be < 0.03 μg/kg bw/day and that organic arsenic consumed by ingesting the product would be < 0.20 μg/kg bw/day. Acknowledgements: This research project benefitted from scientific expertise within Health Canada Offices and Directories, the United States Pharmacopoeia, and NSF International.

References:

Within the group of industrially prepared herbal or botanical products there is a large variation worldwide with regard to the properties and the legal status of these products. Some herbal products are close to or are medicines, while others are close to or even identical to foods such as dietary supplements, functional foods, novel foods, etc. and still others are considered as cosmetics or medical devices. Therefore it is not surprising that recently appropriate regulatory actions have been undertaken to regulate and harmonize the legal status of these various groups of plant preparations throughout Western countries. The European Union (EU) has recently considered herbal products in several legislative texts. Medicinal use has been harmonized for herbal medicinal products (HMP) with regard to well-established (WE) and traditional (T) uses through Directives 2004/27/EC and 2004/24/EC amending Directive 2001/83/EC. Use of herbal preparations in unit dose form under food law is covered in the Food Supplements Directive (FSD) 2002/46/EC. Regulations on nutrition and health claims and the addition of vitamins and minerals and certain other substances to foods have been adopted on December 12, 2006. (Council Regulatios (EC) n°1924/2006 and 1925/2006). Nevertheless, the distinction between traditional herbal medicinal products and food supplements containing herbal products without nutritional value but having physiological effects remains vague and controversial. In this presentation the implementation of the current European regulations at the level of the EU Member State authorities and
manufacturers in terms of quality, safety and efficacy of these herbal products will be discussed. A comparison will be made with other concepts existing worldwide, taking into account not only the above mentioned properties, but also aspects such as access to the market, cost price, and prospects for innovation of herbal products.

S-38

FDA’s Dietary Supplement Good Manufacturing Practice Regulatory Requirements for Globally Marketed Botanicals

Frankos VH1

1 Division of Dietary Supplement Programs, U.S. FDA

The Dietary Supplement (DS) CGMPs should help prevent inclusion of the wrong ingredients, too much or too little of a dietary ingredient, contamination (e.g. natural toxins, bacteria, pesticides, glass, and heavy metals such as lead), and improper packaging and labeling. Following DS CGMPs will increase consumers’ confidence in the quality of the dietary supplement products that they purchase. The CGMPs apply to all domestic and foreign companies that manufacture, package, label or hold dietary supplements, including those involved with the activities of testing, quality control, packaging and labeling, and distributing them in the U.S. The final DS CGMP rule does not apply to raw ingredient manufacturers, although they will continue to need to meet the food CGMP regulations. This presentation will provide an overview of the key CGMP requirements that foreign suppliers of botanical ingredients and dietary supplements should be aware of.

S-39

Adverse Event Reports Submitted to U.S. Food & Drug Administration Associated with Dietary Supplements

McGuffin M1

1 American Herbal Products Association, 8630 Fenton St., #918, Silver Spring, MD 20910

The Federal Food, Drug, and Cosmetic Act was amended in 2006 to require marketers of dietary supplements and nonprescription drugs to submit to the U.S. Food & Drug Administration (FDA), as of December 22, 2007, all reports of serious adverse events associated with and received by marketers of products in these regulatory categories. The new law established additional responsibilities with regard to follow-up reports and recordkeeping. Adverse event reports submitted to FDA during 2008 by marketers of dietary supplements were obtained from FDA through requests under the Freedom of Information Act. Analysis of these records shows that most reports are submitted by marketers, though reports are also submitted by individual consumers and health care practitioners. There are more reports associated with women than with men, and with individuals between the ages of 50 and 79 than with older or younger consumers. FDA’s issuance on March 27, 2008 of a warning to advise consumers to refrain from purchasing products sold as Total Body Formula followed the agency’s receipt of 25 adverse event reports associated with the product, indicating that the reporting system is functioning as a signal generator that assists FDA in acting promptly to protect the public health.

S-40

Improving the Odds of Developing New Drugs from Botanicals: Botanical Review Team’s Perspectives

Dou F1, Chen S1

1 Botanical Review Team, Office of Drug Evaluation 1 (HFD-101), CDER, Food and Drug Administration, Silver Spring, MD

There is no doubt that plants and animals have provided humankind with numerous purified small molecule drugs and there is reason to hope that botanical mixtures will have more to give us. Botanical mixtures, are widely used as dietary supplements in the United States or as herbal medicines elsewhere, have, for the most part, not been extensively studied through well-controlled clinical trials to show beneficial effects. We hope this will change and that more botanical derived pure compounds as well as botanical mixtures will be developed as drugs. The publication of FDA’s “Guidance for Industry—Botanical Drug Products” (drafted in 2000 and finalized in 2004) paved the regulatory pathway for developing botanical mixtures as new drugs. The first botanical drug (Veregen®, derived from green tea) approval through investigational new drug (IND) and new drug application (NDA) processes in 2006 shows that well defined botanical mixtures can be approved as new drugs with demonstration of safety and efficacy through well-controlled clinical trials. Since the publication of the guidance, there has been a growing interest in botanical drug development judged by the increasing numbers of botanical INDs and pre-IND consultations, with a cumulative total of over 350 and growing. Few of the botanical INDs with phase 1 and/or 2 clinical trials have, to date, advanced into late-phase clinical trials. So far, the Veregen® NDA remains the only one submitted and subsequently approved. Although the reasons for this are no doubt different in different cases, several common issues related to quality control and trial designs, among others, have been observed by the Botanical Review Team. A discussion of these issues could shed light on the seemingly low percentage of botanical INDs entering late-stage drug development. We would love to see more botanicals being further developed as new drugs with more success.

S-43

Novel Active Constituents of Momordica Charantia L.

Zhang Y1, Cui JM1, Cao R2, Pan H1, Zhao YQ2

1 Yanbian University of Medicine; Yanji 133000, China
2 School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University; Shenyang 110016, China, E-mail: zyyq4885@126.com; Tel.: +86-24-2398522

1 Beijing ChiaTai Green Continent Pharmaceutical Co., Limited; Beijing 100018, China

Momordica charantia L. (Cucurbitaceae) is widely used as a traditional medicine, having anti-diabetic, antitumor, antiviral activities and so on. Many triterpenoids and other components had been found from M. Charantia. In our present work, the fruit of Momordica Charantia L. were extracted by alcohol then purified by D-101 macroporous absorptive resin followed by chloroform extraction. Isolation and purification were carried out by silica gel chromatography resulting in nine compounds: three novel cucurbitane-type triterpenoids, named charantagenins A(1), B(2) and C(3), (+)-eduesmin(4) and bluenenol A(5) are being reported for the first time from Momordica Charantia L., and four known compounds: karavilagenin D(6), 3β,7β,25-trihydroxy-cucurbita-5, 23(25)-dien-19-ol(7), 5β,19-epoxycucurbita-6,23-diene-3β,25-diol(8) and 5β,19-epoxycucurbita-6,23-diene-3β,19,25-triol(9). The compounds were identified and elucidated by spectral and chemical methods. In addition, they were tested for their cytotoxicity against six cancer cell lines by MTT assay. Test solutions were given to cells in various final concentrations such as 0, 1, 10, 50, 100 μmol/L. The cytotoxic potential of the isolated compounds was investigated by determining the concentrations required for 50% growth inhibition (IC50 values). Compounds 1 and 7 showed cytotoxicity. Compound 7 exhibited little cytotoxicity towards Ds145 prostatic carcinoma cell line (IC50 61.36 μmol/L), MCF-7 mammary adenocarcinoma cell line (IC50 30.56 μmol/L), HL-60 leukemic cell line (IC50 23.63 μmol/L), HGC gastric carcinoma cell line (IC50 50.96 μmol/L), Colon205 colon carcinoma cell line (IC50 34.49 μmol/L) and HepG2 hepatoma carcinoma cell line (IC50 41.69 μmol/L). Compound 1 showed cytotoxicity only towards MCF-7 (IC50 41.74 μmol/L). The remaining compounds showed no cytotoxicity.
The idea of combination therapy has been practiced in Traditional Chinese Medicine for thousands of years, and has been gaining ever-increasing acceptance in the world. During the past decade, owing to changes in the types of disease and limitations of Western medicine, the usage of Chinese herbal medicines (CHMs) has expanded globally. CHMs are complex mixtures consisting of thousands of compounds. Getting useful chemical and bioactive information from these highly complicated matrices has been one of the major challenges to chemists, analysts, biologists and pharmacologists. The speaker, Prof. Li, is the head of Key Laboratory of Modern Chinese Medicine, Ministry of Education, and the director of Department of Pharmacognosy at the China Pharmaceutical University and has been working in the field of CHMs for over 20 years. The most often used instrumental technique, high-performance liquid chromatography (HPLC) remains unchallenged for the analysis of CHMs, because of its low-cost, readily availability and easy of use. This report covers current HPLC-based strategies for the analysis of CHMs, and is divided into three major sections. These are simultaneous quailification and quantification of various components in CHMs (in vitro), metabolite identification and pharmacokinetic investigation of CHMs' components in biological samples (in vivo), and biomacromolecule (protein and DNA) affinity/LC-MS for screening of multiple bioactive candidates in CHMs. Acknowledgements: Financial support for this research from the National Science Foundation of China (No. 90709020, 30530870) is gratefully acknowledged.

Lysimachia is a large genus of medicinal plants belonging to the PRIMULACEAE family, with about 180 species distributed worldwide. It is a folk medicinal plant used in some syndromes such as hypertension and rheumatic disease. There are limited studies on the chemical constituents and pharmacological activities of plants in this genus. Since 1994, a systematic study on the bioactive constituents of four species (Lysimachia congestiflora, Lysimachia capillipes, Lysimachia daueria and Lysimachia clethroides) have been carried out by our group. Till now 86 compounds have been purified and identified on the basis of spectroscopic analysis and chemical methods, with saponins and flavonoids as the major constituents. Among them, 28 new oleanane triterpenoids and 4 new flavonoids were first reported, and two kinds of new saponin aglycones were first revealed as β_3 16α, 22α-trihydroxy-28 - 13-lactone-Oleanane and β_3, 22α, 28-trihydroxy-15α, 16α-epoxy-Olean-12-ene. ZTF, a plant extract from Lysimachia clethroides, has shown clear antitumor activities against S180, H22, U14 and Li210 cell lines both in vivo and in vitro. It also induces cell apoptosis in HL-60, SMMC-7721 and K562 cell, inhibited metastasis on hepatoma and uterine cervix cancer. ZTF has potential to be developed as an anti-tumor drug, and its preclinical research is now underway.

Natural products play a dominant role in the discovery of leads for the development of drugs for the treatment of human diseases. In China, much of natures sources remain to be explored, particularly the toxic plants, that no doubt host novel, bioactive chemotypes that await discovery. There are more than 900 species of toxic plants in our country. The bioactivities of extracts of over 150 toxic plants were investigated in our group. It was found that more than 20 toxic plants showed vasodilator activities and anti-tumor activities, of which 7 toxic plants were further studied by bioassay-guided technique. From the five toxic plants, more than 250 compounds were isolated, including 9 new skeleton compounds and more than 80 novel compounds, of which more than 50 compounds exhibited significant bioactivities to different targets. It lays a foundation for the study of innovative drugs and the elucidation of bioactive substances from toxic plants.

The fruit extract of Emblica officinalis Gaertn. (Euphorbiaceae), commonly known in India as amla (Indian gooseberry), has been popularized as a dietary supplement in the United States and elsewhere, with its antioxidant benefits being attributed to a high content of ascorbic acid. The presence of ascorbic acid in the extract was questioned by earlier researchers, and hydrolysable tannins, emblicains A and B were identified [1] and structurally defined [2]. Our investigations on the emblicains and ascorbic acid con-
tent of the fruit juice and extract, however revealed that ascorbic acid co-elutes with other compounds of similar spectral behavior. Additionally, the hydrolysable tannins, when evaluated were found to be structurally different from the previously reported structures. The earlier reported antioxidant hydrolysable tannins, emblicains A and B, correspond to beta-glucogallin (1) and mucic acid 1,4-lactone 5-O-gallate (2), respectively. Only trace amounts of free ascorbic acid were detected. β-glucogallin is therefore a more relevant and optimal biomarker in Emblica officinalis extract, than ascorbic acid. References: [1] Ghosal S, et al. (1996) Indian J Chem 35B: 941–948. [2] Pozharitskava ON, et al. (2007) J Sep Sci 30: 1250–1254.

Salvia miltiorrhiza Bunge, named “Dan-Shen” in Chinese as a traditional Chinese medicine, is used for improving body function, as well as for cardiac symptoms treatment for hundreds of years in China. The phenolic acids such as rosmarinic acid (RA) and its derivative lithospermic acid B (LAB) aroused scientists’ interest in the last twenty years because of their notable pharmacological activities [1]. In our present study, abiotic elicitors such as methyl jasmonate (MeJA) and Ag+ were found to enhance the phenolic acids at various levels. Meantime, based on the profiling changes of several related gene transcripts and metabolites (intermediates) accumulations, in response to elicitors, a gene-to-metabolite network for understanding of global responses to abiotic elicitation in S. miltiorrhiza is established (1), and a potential (putative) biosynthesis process form RA to LAB was presumed (2), which prompted the possibility of a key gene-based metabolic engineering for the synthesis of active pharmaceutical compounds in S. miltiorrhiza, and would certainly help us to globally and deeply understand metabolic flux of RA synthesis, both at stressed elicitation and genetic-regulation levels. Acknowledgements: This research was financially supported by National Natural Science Foundation of China (20572130, 30608087). References: [1] Liu AH, et al. (2006) J Pharm Biomed Anal, 41: 48–56.

Studies on the Chemical Constituents and Biological Activities of Four Medicinal Plants from Ilex Genus
Tu PP1, Zhou SX, Xie GB, Zheng J, Tang L, Lei Y2
1 State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, P. R. China
2 Modern Research Center for Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P. R. China

There are about 204 plant species of Ilex genus in China, and more than 30 of which are used as traditional Chinese medicine (TCM) or folk medicines to treat various diseases [1]. In order to systematically find out the chemical constituent’s and bioactivities of Ilex plants, and lay a foundation of discovering leading compounds, we carried out an investigation on several medicinal plants of Ilex genus. Herein, we report the research results of 4 medicinal plants of which, including Ilex kudingcha, Ilex hainanensis, Ilex pernyi and Ilex asprella. In total, 194 compounds were isolated and identified from the above 4 plant species, 61 of those are new compounds, and 98 of those are triterpenoids or triterpenoid saponins. Also, the biological screening of triterpenoids and triterpenoid saponins that are the primary and typical constituents of Ilex genus, were assayed for their affect on the cell’s absorption of aggregated low density lipoprotein (aggLDL). A cell based-screening model was applied on aggregated LDL induced-lipid deposition in macrophages to test the inhibitory effects of these compounds. The compounds with inhibitory effects on the intracellular accumulation of aggLDL in macrophages could be regarded as having the potential bioactivity of anti-atherosclerosis. The data indicated that 19 compounds have an inhibition effect on aggLDL absorption. Remarkably, kudinoside A, C and IPB-20 show the significant bioactivity, whose inhibition ratio is 81%, 92%, and 85% at a concentration of 0.2 mg/ml respectively. Thus, the three compounds could the potential candidate for the treatment of arteriosclerosis. Acknowledgements: Thank the National Science Foundation of China for financial support (No. 30672608). This work was also supported by the program for Changjiang Scholar and Innovative Team in University (No.985-2-063-112). References: [1] The editor committee for Flora of China of Chinese Academy of Sciences. (1999) Flora of China. Science Press, Beijing, China.
With many of the practicing acupuncturists in the United States prescribing herbal formulas, the demand for Chinese medicinal plants has been increasing. In the past several years, however, quality concerns have been raised about medicinal plants imported from China. To assure the safe and efficacious care for patients, practitioners need to ensure that plant material produced under controlled and documented conditions in accordance with good agricultural practices. The objective of this research was to determine whether quality plant material of selected species of Chinese medicinal plants could be cultivated in the northeastern United States and whether such cultivation was economically feasible. For these reasons, Agastache rugosa (Fisch. & C.A. Mey.) Kuntze, Leonurus heterophyllus Sweet, L. sibiricus L., and Schizonepeta tenuifolia Briq. were field grown in a randomized complete block design using 0, 100, and 200 kg ha⁻¹ of nitrogen supplied as soybean meal. The nitrogen treatments resulted in dose-related increases in yield in all species. Preliminary organoleptic evaluation (color, aroma, taste, cleanliness) suggests the cultivated Chinese medicinal plants were of higher quality than commercially available plant material imported from China.

Our previous report demonstrated that the majority of in vitro monocyte/macrophage activation exhibited by extracts of Echinacea and other immune enhancing botanicals depends on bacterial lipopolysaccharides and Braun type bacterial lipoproteins (1). We later showed that the activity of diverse commercial Echinacea bulk material varied substantially (up to 200-fold), and that the majority of this activity was also due to these two bacterial components (2). The objective of this study was to determine the contribution of host plant genetics and time of harvest as factors influencing the variation of E. purpurea root and leaf activity. The immune enhancing activity of the aerial part was substantially higher when harvested during the onset of leaf/stem senescence and was the only harvest time where significant differences were found. There was less variation in root activity due to harvest time and genotypic diversity. Although these two factors may have contributed to the large variation in immune enhancing activity previously observed in bulk E. purpurea material obtained from different suppliers in North America, other environmental and agronomic factors may have a greater influence. Acknowledgements: This research was partially funded by grants from the National Institute for Health R01 AT002360 (NCAAM) and by the USDA, Agricultural Research Service Specific Cooperative Agreement No. 58-6408-7-012. References: [1] Pugh ND, et al. (2008) Int Immunopharmacol 8: 1023–1032. [2] Tamta H, et al. (2008) J Agric. Food Chem. 56 (22): 10552–10556.

Diet-related chronic diseases such as diabetes, high blood pressure, and colon cancer are growing problems in industrialized countries and obesity is the major cause with 36 million deaths annually in the world. Yacon, Smallanthus sonchifolius, (Poepp. et Endl.) H. Robinson, is a root crop and is a rich source of phenolic compounds and dietary oligofructans with low glucose content [2]. These constituents have shown efficacy in the treatment and prevention of diet-related chronic diseases, including gastrointestinal disorders and diabetes. The objective of this study is to develop an integrated system that promotes yacon as a sustainable root crop industry in Mississippi, including root and leaf production, as well as processing yacon into value added commodities as functional food. Yacon is native to Peruvian Andes and originally grows at elevation 1800–2800 of meters above sea level (masl) [1]. The purpose of our work is to evaluate Yacon growth in Mississippi during the hot and dry summers at elevation of 137.8 masl. Yacon propagules were produced by tissue culture and by stem cuttings. Micropropagated plantlets adapted to soil conditions at an average of 90%. A significant difference on plant height, number of roots, leaf and root biomass was noticed for plants cultivated in pots which were produced by tissue culture. Only plants produced from stem cuttings were planted in the field and during the first growing season the average yield reached 0.755 kg of fresh weight per plant. Acknowledgements: Thanks go to Mr. Mark Baker, the resident Director of UM Biological Field Station, for preparing the field for yacon plantings and Ms. Michelle Edwards for taking several pictures. This research work was partially supported by the USDA/ARS Cooperative Research Agreement No.58-6408-2-009. References: [1] Grau A, Rea J. (1997) Yacon, Smallanthus Sonchifolius, 21: 224–231 [2] Lachman J, et al. (2003), Plant Soil Environ, 49(6): 283–290.
groups were found statistically insignificant. These results confirm the clonal fidelity of tissue culture raised plants of *Cannabis sativa* and suggest that the biochemical mechanism followed to produce the micropropagated plants does not affect the metabolic content and can be used to produce true-to-type plants of this species for commercial pharmaceutical use.

Variations in Temperature Response of Photosynthesis in Drug and Fiber Types of Cannabis sativa L.

Chandra S, **Lata H**, **Khan IA**

1. National Center for Natural Product Research, School of Pharmacy, University of Mississippi, MS, 38677, USA
2. Department of Pharmacognosy, University of Mississippi, MS, 38677, USA
3. Department of Pharmaceutics, School of Pharmacy, University of Mississippi, University, MS, 38677, USA

The effect of temperature on photosynthetic characteristics of three high yielding drug type (HP Mexican, MX and W1) and three fiber type (Kimpolty, Zolo 11 and Zolo 15) varieties of *C. sativa*, originally from different agro-climatic zones worldwide were studied. The results clearly indicate that among three drug type clones, high potency Mexican (HP Mex) clone was found to be the most thermostolerant. Optimum temperature for photosynthesis (Topt) was observed around 30°C in HP Mex whereas, Ttop was observed in the range of 25 to 30°C in W1 [1]. A comparatively lower value (25°C) for Ttop was observed in MX. Among fiber type clones, Ttop was observed around 30°C in Zolo 11 and Zolo 15 (Ukrainian origin) whereas, in Kimpolty (from Switzerland) it was observed around 25°C. Differences observed in water use efficiency (WUE) among the clones at lower temperature were less pronounced at higher temperatures. Higher WUE and, lower stomatal conduc-
tance and transpiration in HP Mex indicate that this clone may be suitable for the plantation in relatively dry and exposed sites. Both stomatal and mesophyll components seemed to be responsible for the temperature dependence of photosynthesis (Pn) however, their magnitude varied with the clones. A two to five fold increase in dark respiration with an increase in temperature was observed in clones. However, higher increases were associated with clones having higher rate of photosynthesis, indicating an association between photosynthetic and respiratory rates. The results provide a valuable indication regarding clonal variations in temperature dependence of Pn in *Cannabis sativa* and may be used as a tool for initial selection of suitable clones for outdoor cultivation or to provide suitable indoor environment depending upon a particular variety/clone. **Acknowledgements:** The work was supported in part by National Institute of Drug Abuse (NIDA), Contract No. N01DA-0-7707.

P-7

A Rapid Microdistillation Method for the Texas and Turkish Salvia Species and Their Genetic Profiles

Techen N, **Tabanca N**, **Demirci B**, **Turner J**, **Pounders C**

1. National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, University, MS, 38677, USA
2. USDA-ARS-NPURU, The University of Mississippi, University, MS, 38677, USA
3. Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
4. Dallas Arboretum and Botanical Garden, Dallas, TX, 75218, USA
5. USDA-ARS, Southern Horticultural Laboratory, Poplarville, MS, 39470, USA
6. Department of Biology Education, Hacettepe University, 06532 Ankara, Turkey
7. Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA

The leaves of *Salvia* (Labiateae) species have a reputed use in traditional medicine. They are known as ‘ada cay’ in Turkey and consumed as a hot drink. Sage leaves are used traditionally as a tonic, stimulant, carminative, antiseptic, for inflammations in the mouth and for infections in Turkey [1]. *Salvia madrensis, Salvia longispicata x farinacea, Salvia greggii, Salvia roemeriana, Salvia farinacea, Salvia leucantha, Salvia splendens, Salvia coccinea* from Dallas Arboretum & Botanical Garden and *Salvia candidissima*, *S. forskahlei, S. tchihatcshieffii, S. wiedemannii, S. napifolia, S. cryptantha, S. fruticosa* from Turkey were subjected to microdistillation technique and their chemical compositions were analyzed using both gas chromatography (GC-FID) and gas chromatography–mass spectrometry (GC-MS) techniques. The differences in chemical composition of 15 *Salvia* species will be presented in this study. Short Single Repeat (SSR) Microsatellite loci are highly informative genetic markers useful for population genetic studies, molecular breeding and parentage determination. Microsatellites, short nucleotide (1–6 bp) sequences, are the current DNA marker of choice because of their highly polymorphic distribution within the genome. In this study we also report the isolation and characterization of microsatellites from 15 *Salvia* species from Turkey and other countries. The utility of SSR loci as possible method in determining chemotype and authentication of plant species was evaluated and discussed.

Chemical Characterization and Genomic Profiling of *Achillea biebersteinii* from Various Localities in Central Turkey

Techen N1, **Tabanca** N2, **Demirci** B1, **Gurbuz** P1, **Pan** Z2, **Khan** IA1,2, **Demirci** F1, **Wedge** DE1, **Basar KHC**1

1 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, University, MS, 38677, USA
2 USDA-ARS-NPARRU, The University of Mississippi, University, MS, 38677, USA
3 Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
4 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA

Herbal teas prepared from selected *Achillea* (Asteraceae) species are used in traditional Turkish medicine as diuretic, emmenagogue (menstrual flow stimulant), aid in wound healing, treatments for abdominal pain, and used to counteract diarrhea and flatulence [1]. *Achillea biebersteinii* is locally known as “Ayvadana, Sari civanperceni” in Turkey. The aerial parts of five *Achillea biebersteinii* accessions were collected from different locations in Central Turkey to study the essential oil composition and their genetic fingerprinting. Hydrodistilled essential oils were analyzed by GC-FID and GC/MS techniques. Essential oils from Konya region were rich in 34–37% 1,8-cineole and oil from plants obtained from the Ankara region contained 27% p-cymene as the major constituent. *Achillea* oils were also evaluated for their antimarial, antimicrobial and antifungal activities. Detailed chemical profile will be presented in this study. An increasing application of DNA fingerprinting is the use of marker assisted breeding and authentication/identification of (plant) species used in pharmacology or in commercial available food products. In this study we also describe the construction of a genomic library from *Achillea biebersteinii* enriched for Short Single Repeat (SSR) microsatellite loci. We have isolated several hundred clones with distinct SSR's fragments and designed oligonucleotides based on the identified sequence. The effectiveness of genetic markers as possible methods in determining specific chemotypes and authentication of plant species from Turkey and USA was evaluated and discussed in this study. References: [1] Konyalioglu S, Karamenderes C (2005) Journal of Ethnopharmacology, 102: 221–227.

Genomic Profiling of *Cannabis sativa* L.

Techen N1, **Chandra** S1, **Lata** H1, **Eshohy MA**1,2, **Khan** IA1,2

1 National Center for Natural Product Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
2 Department of Pharmaceutics, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
3 Department of Pharmacognosy, University of Mississippi, MS, 38677, USA

Cannabis sativa is an interesting crop for several industrial uses. It has been used for fiber (hemp), for medicinal purposes, and as a psychoactive. Although the main psychoactive chemical compound in *Cannabis* is *Δ*-tetrahydrocannabinol (THC), the plant is known to contain about sixty cannabinoids, however, most of these “minor” cannabinoids are produced in trace amounts. Short Single Repeat (SSR) Microsatellite loci are highly informative genetic markers useful for population genetic studies, linkage mapping and parentage determination. Methods to identify novel microsatellite loci commonly use subtractive hybridization to enrich small-insert genomic libraries for repeat sequences. We have developed a method that allows highly efficient ligation to genomic DNA and improves recovery of sequences after subtractive hybridization to biotinylated oligos. The method improves current repeat-enrichment strategies, resulting in representative small-insert libraries with a very high proportion of positive clones. The effectiveness of genetic marker associated to determining three different chemotypes in *Cannabis* was evaluated and discussed, as possible method in marker-assisted breeding of *Cannabis* in the pharmaceutical field.

Application of DNA Barcoding to the Medicinal Plants of the Araceae Family

Luo K1,2, **Chen** SL1,2, **Chen** KL1, **Song** JY2, **Yao** H3

1 Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
2 Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, P.R. China

The medicinal plants of the Araceae family are distributed widely throughout China and more than half of them are medicinal plants, whereas materials of similar morphology and chemical fingerprints are often misidentified. DNA barcoding is a new technique that uses DNA sequences from a small fragment of the genome to identify species. Five specific DNA regions (matK, rpoB, rpoC1[1], rbcL, psbA-trnH[2]) of 95 samples of 34 genera were amplified and sequenced. We found that the psbA-trnH is difficult to sequence through PCR product, because this region is A, T rich (70%, averaged). The amplification efficiency of rbcL, matK, rpoB and rpoC1 were 87.4%, 94.7%, 98.9%, 100%, respectively. However the matK was variable enough to identify species, and the intra-specific diverges. Essential Oils released from 0 to 0.2% were significantly less than the inter-specific diverges from 0.42% to 19.4%. The results indicate that the psbA-trnH is not suitable to identify medicinal plants of the Araceae family. The matK can be used as a barcoding to identify all species of Araceae. Acknowledgements: This work is supported by the International Cooperation Program of Science and Technology (No. 2007DFA30990) and the Special Founding for Healthy Field (No. 200820403) References: [1] Chase MW, et al. (2007) A proposal of universal protocol to barcode all land plants 56(2): 295–299. [2] Kress WJ, et al. (2005) Proceedings of the National Academy of Sciences USA 102: 8369–8374.

Relationship between DNA Barcoding and Chemical Classification of Salvia L. Medicinal Herbs

Han JP1, **Shi** LC1, **Li** MH2, **Yao** H2, **Song** JY1, **Xu** HX2, **Sun** C1, **Chen** SL1,2

1 Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100193, P.R. China
2 Chinese Medicine Laboratory, Hong Kong Jockey Club Institute of Chinese Medicine, Hong Kong, P.R. China
3 Baotou Medical College, Inner Mongolia, 014000, P.R. China
4 Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, P.R. China

In China, over 20 Salvia species have been used as Danshen in traditional folk medicine [1]. The rapid and accurate identification of species is critical to Salvia L. medicinal herbs. DNA barcodes and chemical fingerprint are two approaches that have recently garnered much attention [2,3]. Here we compared these two methods for identification of the genus of Salvia L. First, we sequenced the nucleotide sequences of the internal transcribed spacer region 2 amplified from 32 medicinal plants belonging to Salvia L and seven other groups of labiatae medicinal plants. By using neighbor joining analyses, phylogenetic trees were mapped by their sequence diversity. Secondly, we tested the water-solution bioactive components (Rosmarinic acid, Lithospermic acid and Salvianolic acid B.) and lipid soluble components (Tanshinolone and Cryptotanshinolone) of every sample by HPLC. Additionally, we compared the relationship between the sequence of ITS2 and the components of every branch in NJ tree, and found regularity less less between them. By contrast, DNA barcoding was sequencing-based and therefore could provide more accurate and fast results in large-scale studies. This is the first paper to show the relationship between DNA barcoding and chemical components. Acknowledgements: Thanks go

DNA barcoding has recently been proposed as a technique that employs a short, standardized gene region to identify species. DNA barcoding is well established in animals because of a widely appropriate sequence for them, the cytochrome oxidase 1 [1], but there is not any universally accepted barcode for plants till now. Therefore, the primary task for barcoding plants is to find more useful barcodes that can identify as many species as possible. Medicinal plants have been used as traditional Chinese drugs for treating diseases, some of them are similar in morphology, and are often misidentified by chemical fingerprints. Rosaceae includes many medicinal plants with similar morphology and are usually hard to be identified. Here, we chose five potential barcodes, Universal Plastid Amplicon (matK, rpoB, rpoC1, rbcL) and the nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS), to identify species from different genera in Rosaceae. The results suggest that the nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) is a candidate to discriminate all of plant species in Rosaceae. Acknowledgments: We thank all my teachers and classmates in our laboratory very much for their help. References: [1] Kress WJ, et al. (2005) PNAS, 102: 8369–8374.

DNA barcoding in Fabaceae: Using DNA Barcodes to Identify Rosaceae

Pang XH1, Chen SL1
1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193 Beijing, China

In this research we investigated the biosynthesis and accumulation of cannabinoids during the growth phases of Cannabis sativa leaves and flowers. Flowers from standardized indoor breeding were analyzed for transcription and expression of identified genes [1–5] from the cannabinoid pathway and the accumulation of their cannabinoid metabolites [6]. The correlation between the various measurements should give more information on the regulation of the cannabinoid production process within the plant. Plant samples were taken randomly during standardized cultivation. Every week, for eight weeks in a row, three plants were sampled, and materials were treated for analysis by QRT-PCR, HPLC, and 2D-electrophoresis. With QRT-PCR the transcription of CBDA-(BAF65035), THCA-(BAE48253) and olivetol synthase (BAG14339) genes were quantified against cloned genes. 2D-electrophoresis was used to detect any specific protein expression during the cultivation period. From this ongoing study, we have indicated that the amount of THCA in the leaves stays in certain ranges throughout the sampling period and is not dependent on the vegetative or flowering status of the plant. In contrast, the content of THCA in the flowers is depending on the growth period, which is in line with previously reported data on the correlation of trichoma and cannabinoids. The information obtained from this study is used as a profound basis for further genetic and metabolic analysis. References: [1] Kim JS, et al. (2006) Biotechnol Lett. 28(13): 999–1006. [2] Sirikantarams S, et al. (2005) Plant Cell Physiol. 46(9): 1758–1768. [3] Sirikantarams S, et al. (2004) J Biol Chem. 279(38): 39767–39774. [4] Morimoto S. et al. (1998) Phytochemistry, 49(6): 1525–1529. [5] Taura F. et al. (1996) J Biol Chem. 271(29): 17411–17416. [6] Fellermeier M. et al. (2001) Eur J Biochem. 268(6): 1596–1604.

Genetic and Metabolic Studies of Cannabinoids in Standardized Medicinal Cannabis sativa Muntendam R, Erkelens T, Kayser O
1 Department of Pharmaceutical Biology, University of Groningen, Groningen University for Drug Exploration (GUIDE), A. Deusinglaan 1, 9713AV Groningen, The Netherlands
2 Bedrockan BV, Venendam, The Netherlands

Salvia miltiorrhiza Bunge (Dan-shen in Chinese), is a commonly used traditional Chinese medicine for improving body function, as well as for the treatment of cardiac symptoms. The phenolic acids such as rosmarinic acid (RA) and its derivative lithospermic acid B (LAB) aroused scientists interest in the last twenty years because of their notable pharmacological activities [1]. As for S. miltiorrhiza, hairy root cultures have been suggested to be more stable and efficient than cell suspension cultures in active constituent accumulation [2]. In our present study, we found that methyl jasmonate (MeA) and Ag+ could greatly enhance the phenolic acids at various levels. Meantime, several related gene transcripts and metabolites (intermediates) accumulations involved in RA synthesis pathway (1), in response to elicitors, were determined by real-time quantitative PCR and liquid chromatographic-tandem mass spectrometry, respectively. Therefore, a gene-to-metabolite network for understanding of global responses to abiotic elicitation in S. miltiorrhiza is established, and a potential (putative) biosynthesis process form RA to LAB is presumed (2), which is now under intensive investigation by analysis of differential expression protein and precursor feeding experiment in our laboratory. Acknowledgements: This re-
“Damiana” is used traditionally as stimulant, aphrodisiac, nerve tonic, diuretic, laxative, and for kidney, menstrual and pregnancy disorders [1]. The ancient Mayans used it to treat giddiness and loss of balance [2] while the Mexican Indians made a beverage for its reputed aphrodisiac properties [3]. Though “damiana” has a long history of usage, confusion over its precise identity and nomenclature still exists. According to British Herbal Pharmacopoeia (1996) “Damiana folium” consists of dried leaves of Turnera diffusa Willd. Ex Schults, var aphrodisica and related species. Beside “false damiana” are often used as substitutes for damiana. The name “false damiana” is referred to both T. ulmifolia (Turneraceae) as well as for Aplocopus discideae DC (Asteraceae) [4]. We observed that existing studies were not opportune and dependable in providing the exact identity of T. diffusa and discriminating it from the known “false damiana” species. In the present study we have provided taxonomic account on Turnera diffusa and furnished easy and reliable method to authenticate T. diffusa and to detect its possible substitute’s using morphological and micro-morphological characteristics, with the aid of light, fluorescent and scanning electron microscopy. For the first time HPTLC, and UPLC comparative analysis, analysis of powder and microscopic evaluation of raw material is critically important, to ensure the efficacy and safety of these products. Available herbal monographs lack information on Caralluma. The present study, details the macroscopic and microscopic evaluation of Caralluma adscendens var. fimbriata (Wall.) Gravely & Mayur

P-16

Taxonomic Clarification on Turnera diffusa Ward and its Demarcation from “False Damiana” using Fluorescence, Scanning Electron Microscopy, HPTLC and UPLC

Joshi VC1, Rao AS1, Wang YH1, Avula B1, Khan IA1,2

1 National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

The use of dietary supplement Cha De Bugre for weight loss/appetite suppressant is getting increasingly popular. The efficacy and safety of these products depends on the quality and accurate identity of raw material. Along with taxonomic evaluation, macroscopic, microscopic and organoleptic assessment is one of the reliable, consistent, competent and cost effective methods in authentication of raw material [1]. In Brazil Cordia salicifolia Cham (Boraginaceae) is commonly referred to as cha de bugre or coffee of the woods. On the other hand Casearia silvestris Sw. (Flacourtiaceae) is also frequently referred to as congonhas-de-bugre and is often substituted for Cordia salicifolia due to the resemblance in its common name. In the present study we have provided a detailed monographic account (involving taxonomy, species distribution, macro and micro-morphological evaluation, analysis of powder and shifts) for the two species. We also analyzed commercially available cha de bugre samples. **Acknowledgements:** This research is funded in part by “Botanical Dietary Supplements: Science-Base for Authentication” funded by Food and Drug Administration grant number FD-U-002071-01. References: [1] Joshi V, Khan I, (2006) ed. Khan I, Smillie T, Craker L, Gardner Z, in Proceedings of the Fourth International Conference on Quality and Safety Issues Related to Botanicals, ISHS, Leuven, Belgium, Acta Horticulturae 720. [2] Siqueira V, et al. (2006) Brazilian Archives of Biology and Technology, 49: 215–218.

P-17

Identification of Weight Loss Supplement Cha De Bugre

Joshi VC1, Khan IA1,2

1 National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

P-18

Authentication of Caralluma adscendens var. fimbriata (Wall.) Gravely & Mayur

Joshi VC1, Rao AS1, Wang YH1, Avula B1, Khan IA1,2

1 National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

Caralluma is an edible succulent plant used by tribes in India to suppress hunger and enhance endurance [1]. It is a new arrival in the family of succulent plants that are becoming increasingly popular for their appetite suppressant and weight loss properties as well as their ability to lower blood sugar. Accurate identity of the raw material is critically important, to ensure the efficacy and safety of these products. Available herbal monographs lack information on Caralluma. The present study, details the macroscopic and microscopic evaluation of Caralluma adscendens var. fimbriata
along with details on its distribution and nomenclature. Acknowledgements: This research is funded in part by “Botanical Dietary Supplements: Science-Base for Authentication” funded by Food and Drug Administration grant number FD-U-002071-01. We would like to thank Dr. Aparna Watve and Dr. Gaikwari, from Hi-Tech Bio laboratories, India for providing authenticated plant material. References: [1] Kuriyan R, et al. (2007) Appetite 48: 338–344.

Development of the NC Arboretum Medicinal Plant Germplasm Repository for Collaborative Research and Conservation
McCoy JA1
1 NC Arboretum, 100 Frederick Law Olmsted Way Asheville, NC 28806-9315, 828-665-2492 ext. 268, jmccoy@ncarboretum.org

The NC Arboretum Medicinal Germplasm Facility will be a collaborative effort by public and private organizations to advance the conservation, authentication, and cultivation of medicinal plants by collection and long-term storage of germplasm and their associated documentation. Germplasm will include but not be limited to seed, DNA, pollen, and entire plants when applicable. In addition soil samples, voucher specimens, and representative tissue samples for chemical analysis will be collected and stored. Located at the NC Arboretum in Asheville, in situ collection efforts commenced in spring 2008. The mission of the NCAM will include: 1.) the long-term conservation of diverse medicinal germplasm through field collection and acquisition; 2.) Germination and seed viability testing following pre-established IOSA protocols; 3.) establishing collaborative germplasm-related research projects with regional co-operators; and 4.) encouraging the use of the collections and associated information for phytopharmaceutical screening, crop improvement and product development. Comprehensive accession information including passport data, images, site maps, and experimental results will be maintained via an interrelational database. Conservation via seed collection and storage will play a central role in protecting the high levels of genetic diversity available in our extraordinarily rich bioregion. The collections will be suitable for a wide variety of research purposes including but not limited to analysis of metabolites of interest for pharmaceutical purposes, cultivar breeding studies, and genetic population analysis.

Building Partnership for Drug and Ag Discovery and Conservation of the Natural Resources in Brazil
Cerdeira AL1, Walker LA2, Moraes RM2, Khan IA2, França SC3, Pereira AMS3, Pimentel FA4, Matallo MB5
1 Brazilian Department of Agriculture, Embrapa/Environment, C.P. 69, Jaguariúna, SP, 13820-000, Brazil, cerdeira@cnpmma.embrapa.br
2 National Center for Natural Products Research, The University of Mississippi, University, MS, 38655, USA
3 University of Ribeirão Preto (UNAERP), Ribeirão Preto, SP, 14096-380, Brazil
4 Brazilian Department of Agriculture, Embrapa/Tropical Agroindustry, C.P. 3761, Fortaleza, CE, 60515-110, Brazil
5 Biological Institute of Campinas, Rodovia Heitor Penteado Km 3,5 -Campinas, SP, 13001-970, Brazil

Cerrado, Brazilian savanna, covers 2 million km², representing 23% of the land surface of the country. It occupies the central part of Brazil, from the margin of the Amazonian forest to outlying areas in the southern states of Sao Paulo. According to Dias' [1] estimation, the Cerrado contains 160,000 species of plants, fungi and animals. This proposed research program will expand and upgrade the conservation effort. The project will: 1) build an International Partnership on Conservation and Natural Product Discovery; 2) map and protect the genetic resources by establishing germplasm bank of two endemic families Leguminosae and Combretaceae; 3) search for new pharmaceuticals and agrochemicals to control tropical diseases, and agricultural pests and pathogens, 4) create an Eco-extract-library and ex situ collections for future studies; 5) establish a microbial library of plant associated microorganisms. As the establishment of in vitro germplasm bank progresses, endophytic microbes commonly associated with plants will outgrow the host tissues and allow us to detect and identify them. Some of these organisms are responsible for production of secondary metabolites [2,3]. Clonal propagation by in vitro methods will supply the biomass for fractionation and isolation of the active metabolite(s) and future developments. In addition, micropropagation will provide a unique opportunity to identify and evaluate the contribution of plant associated microorganism to the biological properties. References: [1] Dias BF, (1992) Manejo e Conservacao dos Recursos Naturais Renovaveis. Funatura, Brasilia, DF, Brazil. [2] Lata H, et al. (2006) Plant Cell Tiss Org, 85: 353–359. [3] Strobel G, (2006) Curr Opin Microbiol, 9: 240–244.

Antifungal Activity of Strypnodendron adstringens (Mart.) Extracts
Sieira VC1, Cerdeira AL2, Martinez-Ross NM3, Franco SC4, Pereira PS5, Bertoni FA6, Fachin AL1, Pereira AMS1
1 University of Ribeirão Preto (UNAERP), Ribeirão Preto, SP, 14096-380, Brazil
2 Brazilian Department of Agriculture, Embrapa/Environment, C.P. 69, Jaguariúna, SP, 13820-000, Brazil, cerdeira@cnpmma.embrapa.br
3 São Paulo University, Department of Genetics, Ribeirão Preto Medical School, Ribeirão Preto, SP, 14049-900, Brazil
4 Brazilian Department of Agriculture, Embrapa/Environment, C.P. 69, Jaguariúna, SP, 13820-000, Brazil, cerdeira@cnpmma.embrapa.br
5 São Paulo University, Institute of Botany, Ribeirão Preto, SP, Brazil
6 Brazilian Department of Agriculture, Embrapa/Environment, C.P. 69, Jaguariúna, SP, 13820-000, Brazil, cerdeira@cnpmma.embrapa.br

Strypnodendron adstringens (Mart.) Coville, is a medicinal plant that belongs to Mimosoideae. It is also known as barbatimão. Its aqueous extract has anti-inflammatory and antimicrobial properties [1]. This study was conducted to evaluate the phenols and tannins content and the antifungal activity of the aqueous extract against Trichophyton rubrum. A clinical isolate of T. rubrum (ATCC-MYA3108) was obtained from a patient admitted to the University Hospital of Ribeirão Preto University, SP, Brazil. The mutant strain TruMDR2 was obtained from the disruption of the TruMDR2 gene from isolate MYA3108. Phenol concentrations were determined by colorimetric method and the antifungal potential was determined in bioassays measuring the minimal inhibitory concentration (MIC). The antifungal activity of the extracts was confirmed against T. rubrum. The aqueous extract S. adstringens contains phenols and tannins and showed a minimal inhibitory concentration (MIC) of 156 µg/mL for both isolates of T. rubrum (Table 1), as compared to fluconazole at 75 µg/mL. The fractions were less active than the whole extract suggesting that the activity is related to possible interactions of compounds not due to a specific metabolite, as mentioned by Bezerra et al. [2]. References: [1] Souza C, Felfili J, (2006) Acta Botanica Brasílica, 20: 135–142. [2] Bezerra JCB, et al. (2002) Fitoterapia, 73: 428–430.

Table 1 Minimal inhibitory concentration (MIC) µg/mL of water extract and fractions of S. adstringens against two strains of Trichophyton rubrum. (Standard Deviation 6.78).

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Water extract</th>
<th>Frac-</th>
<th>Frac-</th>
<th>Frac-</th>
<th>Flu-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>tion I</td>
<td>tion II</td>
<td>tion III</td>
<td>conazole</td>
</tr>
<tr>
<td>MYA3108</td>
<td>156</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>75</td>
</tr>
<tr>
<td>TruMDR2</td>
<td>156</td>
<td>312</td>
<td>625</td>
<td>1250</td>
<td>75</td>
</tr>
</tbody>
</table>

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Ecological Suitability of Arctium lappa L. and its Suitable Cultivation Regions in China

1 College of Pharmacy, Liaoning University of Traditional Chinese Medicine, 77 Life One Road, DD port, Dalian 116600, China
2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
3 Shenyang Ecological Institute, Chinese Academy of Science, Shenyang 110016, China

Comparative Pharmacognostic Studies on Aloe schweinfurtii and Aloe vera (Aloecceae) Leaves

Odeleye OM, Oyedeji OA, Shode FO
1 Department of Chemistry, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
2 School of Chemistry, University of KwaZulu-Natal, Westville Campus, P/Bag X54001 Durban 4000, South Africa
E-mail: odeleyeom@yahoo.com

Plants are a potential source of antimicrobial compounds. In this research, a plant from the family Cucurbitaceae was studied. Momordica foetida Schum. Et Thonn is a climber commonly found in swampy areas in Central and Southern Africa. It has medicinal uses ranging from spiritual and psychiatric conditions to physical diseases. Drinking of aqueous leaf extracts of the plant for the treatment of malaria is reported in East and Central Africa [1,2]. The leaves were extracted using 70% ethanol and partitioned into hexane, chloroform, ethyl acetate, butanol and aqueous then screened for antimicrobial activity against 32 bacterial strains for both standard and isolates. Thus, ethyl acetate and chloroform fractions were chosen for further studies due to higher antimicrobial activity with minimum inhibitory concentration (MIC) values for 32 bacterial strains ranging from 0.156 and 2.5 mg mL⁻¹. Active fractions were further purified using chromatographic techniques. A detailed phytochemical investigation resulted in isolation of four cucurbatine triterpenoids and flavonoids compounds from chloroform and ethyl acetate fractions respectively. The chemical structures of the isolated compounds were established through UV, IR, MS, ¹H, ¹³C COSY and 2D NMR spectroscopic data. Antimicrobial investigations were carried out on the isolated compounds against 25 bacterial strains of which 38.7% dihydroxycurcurita-5,23,25-trien-19-ol followed by Kaempferol-3-0-B-D-glucopyranoside displayed minimum inhibitory concentration (MIC) values for 25 bacterial strains ranging from 7.8 to 250 µg mL⁻¹. Acknowledgement: We are grateful to the National Research Foundation and University of Zululand, South Africa for financial support. References: [1] Hakizamungu E, et al. (1992) J Ethnopharmacology 36: 143–146. [2] Rwangabo PC, (1993) La medicine traditionnelle au Rwanda. Edition Karthala and ACCT, Paris, France.

Chemical Composition and Biological Activities of Four Achillea Essential Oils from Turkey

Demirci B, Tabanca N, Wedge DE, Khan SI, Khan IA, Aytac Z, Baser KHC
1 Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
2 USDA-ARS-NPURL, University of Mississippi, University, MS 38677 USA
3 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences
4 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677 USA
5 Department of Biology, Faculty of Science and Letters, Gazi University, 06500 Ankara, Turkey

The genus Achillea L. of Asteraceae is widely distributed and is represented by 42 species in Turkey. Achillea species comprise an im-
portant biological resource in folk medicine in the treatment of various diseases. In this study, the aerial parts of four *Achillea* species collected from different parts of Turkey were investigated for their essential oil composition and biological activity. Essential oils obtained by hydrodistillation were analyzed both by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The main *Achillea* oil constituents were found as follows: *A. filipendula*: 43.8% santolina alcohol, 14.5% 1,8-cineole and 12.5% cis-chrysanthenyl acetate; *A. magnifolia*: 27.5% linoral, 5.8%spathulenol, 5.5% terpin-4-ol, 4.7% α-terpineol and 4.7% β-eudesmol; *A. tenuifolia*: 12.4% artemisia ketone, 9.9% p-cymene, 7.1% camphor, 5.9% terpin-4-ol, 4.7% carvophylene oxide and 4.5% α-pinen; *A. tomentollum*: 9.4% camphor, 7.6% linoral, 7.1% α-terpineol, 5.3% trans-pinocarveol and 4.5% trans-verbenol. *Achillea* essential oils were investigated for antimalarial, antimicrobial and antifungal activities. *Achillea* oils showed no antibacterial activity against human pathogenic bacteria up to a concentration of 200 mg/mL. *A. tomentollum*, *A. tenuifolia* and *A. magnifolia* demonstrated mild antifungal activity against *Cryptococcus neoformans* (IC₅₀ = 45, 20 and 15 mg/mL, respectively). *A. magnifolia* and *A. filipendula* showed strong antimalarial activity against chloroquine sensitive D6 (IC₅₀ = 1.2 and 0.68 mg/mL) and chloroquine resistant W2 (IC₅₀ = 1.1 and 0.9 mg/mL) strains of *Plasmodium falciparum* without cytotoxicity to mammalian cells. *Achillea* oils also demonstrated weak non-selective antifungal activity against filamentous fungal plant pathogens *Colletotrichum acutatum*, *C. fragariæ*, and *C. gloeosporioides*.

P-26

Essential Oil of Inula sarana Boiss. (Compositae), an Endemic Species of Turkey

Kirimer N1, Demirci B1, Duman H2, Baser KHC3

1. Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470 Esiksehir, Turkey
2. Gazi University, Faculty of Science and Letters, Department of Biology, Ankara, Turkey

P-27

Evaluation of the Angiogenic Activity of Salvia triloba L. Essential Oil

Koparal AT1, Demirci B1, Kaya M1, Duali G2, Butun S2, Baser KHC3, Demirci P4

1. Department of Biology, Faculty of Science, Anadolu University, 26470, Eskisehir, Turkey
2. Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
3. Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey

The genus *Salvia* L. (Lamiaceae) is represented by 89 species, there-of forty five endemic in Turkey [1]. Most of the *Salvia* species are used in various preparations and forms including the essential oil, in folk medicine among other uses for their anti-inflammatory, antipyretic, pain relieving and wound healing properties [1,2]. In this study, the herbal parts of *S. triloba* obtained from a commercial source cultivated in Izmir, Turkey, was investigated both for its (anti-)angiogenic properties and for its essential oil composition. The essential oil was obtained by hydrodistillation, which was analyzed both by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Main constituents were identified as 1,8-cineole (44%), camphor (12%), α-pinene (6%), β-pinene (6%), camphene (5%), and myrcene (3%). Using the *in vivo* CAM (Chorio Allantoic Membrane) assay the *Salvia* essential oil and its main constituents (0.5–100 µg/pellet) as well as *in vitro* cytotoxicity (MTT), cell migration and tube formation tests (HUV-EC-C cell lines) of the essential oil (0.01–200 µM) in comparison with standards such as suramin, thalidomide, cortisone were investigated for their angiogenic properties. As a result, *S. triloba* essential oil showed in both tests antiangiogenic activity in a dose dependent manner.

P-28

Insecticidal Activities and Composition of Essential Oils from the Medicinal Plant Garden at the National Center for Natural Products Research

Tabanca N1, Weersaarasya AD2, Demirci B1, Baser KHC3, Khan IA2,4, Pridgeon J5, Becnel JJ5, Sampson BJ6, Werle CT6, Wedge DE7

1. United States Department of Agriculture, Agricultural Research Service, National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA
2. Department of Pharmacognosy, School of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
3. Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
4. Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
5. Mosquito and Fly Research Unit, USDA-ARS-CMAVE, Gainesville, FL 32608, USA
6. USDA-ARS, Southern Horticultural Laboratory, Poplarville, MS 39470, USA

Plant-derived natural products are used world wide as biologically active pharmaceuticals and agrochemicals. Because of the necessity of finding safer insecticides in combination with the need of preventing environmental degradation and pollution, there is increasing interest in the use of plants as insecticides and insect feeding deterrents. In screening for new natural product-based insecticides, 12 different plant essential oils were tested for larvicidal activity against *Aedes aegypti* and insecticidal activity against azalea lace bugs, *Stephanitis pyrioides*. Study samples were obtained from the cultivated collection at the Medicinal Plant Garden at the NCNPR. Harvested samples were air-dried and processed to preserve volatile oils. All samples were subjected to water distillation using Cleverg-type apparatus to obtain essential oils. Twelve essential oils belonging to six families were analyzed by gas chromatography and gas chromatography-mass spectrometry techniques. Hydrocarbons and oxygenated derivatives of terpenoids, aldehydes, and phenylpropanoids comprised the volatile compounds in these essential oils. *Artemisia annua* essential oil resulted in 100% mortality at 30 ppm to 1st instar larvae of *Ae. aegypti*. Twelve oils tested at 1% concentrations exhibited 21–86% mortality against *S. pyrioides*. Detailed insecticidal results will be presented.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Concern about genetic pest resistance and poisoning of non-target organisms are spurring the search for “softer” insecticides with greater selectivity and multiple modes of action. Essential oils are blends of secondary metabolites occurring in plants as deterrents against insect herbivores, but remain relatively safe and even beneficial to vertebrates [1]. We used serial-time mortality bioassays to screen the essential oils from 54 representative plant species from 30 genera comprising 13 families of gymnosperms and angiosperms for bioactivity to laboratory-cultured azalea lace bugs, *Stephanitis pyrioides* (Scott). The principal developmental stages of bugs exposed to the essential oils were the adults-long-lived individuals that provide parental care to their leaf-inesting brood. Clever-type distillation extracted essential oils from dried plant material and lead components were purified and identified with gas chromatography-mass spectrometry (GC-MS). Oils were mixed with de-ionized water and a non-toxic emulsifier 0.9 to determine mortality, as well as LD50, LD95 and LD99 with de-ionized water and a non-toxic emulsifier 0.9.

The Chemical Composition and Biological Activities of *Notopterygium incisum* and *Notopterygium forbesii* Essential Oils from China

Wedge DE1, Gao Z2,3, Tabanca N1, Demirci B4, Baser KHC4, Pridgeon J5, Becnel JJ5, Sampson BJ6, Werle CT6

1 United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, The University of Mississippi, University, MS 38677, USA
2 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, University, MS 38677, USA
3 Department of Chinese Herbal Chemistry, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102 China
4 Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
5 Mosquito and Fly Research Unit, USDA-ARS-CMAVE, Gainesville, FL 32608, USA
6 USDA-ARS, Southern Horticultural Laboratory, Poplarville, MS, 39470, USA

Roots and rhizomes of *Notopterygium incisum* and *Notopterygium forbesii* (Apiaceae) are popular in China for use as Traditional Chinese Medicines. Qiang huo is the Chinese name for the root of *Notopterygium* species. Historically, *Notopterygium Radix* and *Rhezone* have been used as diaphoretic, antifebrile and anodyne. In the course of screening for novel naturally occurring biologically active compounds in *Notopterygium incisum* and *Notopterygium forbesii* roots and *N. forbesii* rhizomes, water distilled essential oils were analyzed by GC-MS and found to contain antibacterial, antifungal and anti-inflammatory activity associated with *A. dahurica* and *A. pubescens* include antibacterial, anti-febrile, antialgal, antispastic actions [2]. *Angelica dahurica* and *A. pubescens* (Umbelliferae) were fragmented and hydrodistilled to obtain the volatile compounds, and were then identified using gas chromatography and gas chromatography-mass spectrometry. Main *Angelica* oil constituents were found as follows: *A. dahurica*: 46.3% a-pinene, 9.3% sabine, 5.5% myrcene, 5.2% decanal and 4.9% terpinen-4-ol and *A. pubescens*: 37.6% a-pinene, 11.6% p-cymene, 8.7% limonene and 6.7% cryptone. *Angelica* essential oils were examined for antimarial, antimicrobial, antifungal and insecticidal activity. Antifungal activity of the essential oils from both *Angelica* species was non-selective at inhibiting growth and development of reproductive stroma of the plant pathogens *Colletotrichum acutatum* and *C. gloeosporioides*. *Angelica pubescens* oil resulted in 40% mortality at 62.5 ppm to 1st instar larvae of *Aedes aegypti* at 24 h. *Angelica dahurica* oil at 1% concentration exhibited an 86.67% mortality in laboratory bioassays with azalea lace bugs, *Stephanitis pyrioides*, in comparison with *A. pubescens* oil at 44.0%. References: [1] The Pharmacopoeia Commission of P.R. China (2005) *The Pharmacopoeia of P.R. China*, 1: 69 and 185. [2] Wang YS (1983) *The Pharmacology and Application of Chinese Medicine*, People’s Medical Publishing House, Beijing, 796.

Planta Med 2009; 75: 399–457

Georg Thieme Verlag KG Stuttgart - New York - ISSN 0032-0943

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Microbial Metabolites of 7, 8-dimethoxyflavone and 5-methoxyflavone
Herath W1, Mikell JR1, Khan IA1,2
1 National Center for Natural Products Research, and
2 Department of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

In selecting methoxyflavones as potential chemopreventive agents it is important to determine how susceptible they are towards metabolism [1]. Since, microorganisms are predictive models for mammalian drug metabolism we investigated prospectively the microbial metabolism of 7, 8-dimethoxyflavone (1) and 5-methoxyflavone (8) using 40 microorganisms. Transformation of 7, 8-dimethoxyflavone (1) by Mucor ramannianus produced five metabolites: 7, 8-dimethoxy-4′-hydroxyflavone (2), 3′, 4′-dihydroxy-7, 8-dimethoxyflavone (3), 7, 3′-dihydroxy-8-methoxyflavone (4), 7, 4′-dihydroxy-8-methoxyflavone (5) and 8-methoxy-7, 3′-trihydroxyflavone (6) (Table 1). It was however, completely converted to a single metabolite, 7-hydroxy-8-methoxyflavone (7) by Aspergillus flavus. 5-Methoxyflavone (8) when fermented with Beauveria bassiana gave a single product, 5-methoxyflavanone (9). Conversion of 8 with Aspergillus alliaceus yielded the metabolite, 4′-hydroxy-5-methoxyflavone (10). The structures were established by spectroscopic methods. Compound 1 showed moderate susceptibility towards oxidative metabolism [1]. 5-Methoxyflavone which was highly resistant to human microsomal oxidation [1] underwent transformation to metabolites 9 (7.47%) and 10 (71.92%) when fermented with B. bassiana and A. alliaceus respectively.

Flavonol Glycosides from the Flowering Plant Gaura biennis
Xu WH1,2, Jacob MR1, Agarwal A1, Liang ZS2, Li X1, Clark AM1
1 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
2 College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China

Phytochemical investigation of the whole plant of Gaura biennis led to isolation of eleven flavonol glycosides (1–11). Three of them (1–3) are new compounds and their structures were determined as quercetin 3-O-(2-O-α-rhamnopyranosyl-6-O-E-p-coumaroyl)-β-glucopyranoside (1), quercetin 3-O-(2-O-α-rhamnopyranosyl-6-O-Z-p-coumaroyl)-β-glucopyranoside (2), and kaempferol 3-O-(2-O-α-rhamnopyranosyl-6-O-E-p-coumaroyl)-β-glucopyranoside (3) by spectroscopic interpretations. The known compounds were kaempferol 3-O-glucopyranoside (4), kaempferol 3-O-(2-O-α-rhamnopyranosyl)-β-glucopyranoside (5), kaempferol 3-O-rutinoside (6), quercetin 3-neohesperidoside (7), quercetin 3-rutinoside (8), quercetin 3-O-(2-O-α-rhamnopyranosyl)-β-glucopyranoside (9)

<table>
<thead>
<tr>
<th>R</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>rha</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>OH</td>
<td>rha</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>OH</td>
<td>rha</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>OH</td>
<td>rha</td>
</tr>
<tr>
<td>7</td>
<td>OH</td>
<td>rha</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>OH</td>
<td>rha</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>OH</td>
<td>rha</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>OH</td>
<td>rha</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>OMe</td>
<td>OMe</td>
<td>OMe</td>
<td>OMe</td>
<td>OMe</td>
<td>OMe</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>R2</td>
<td>OMe</td>
<td>OMe</td>
<td>OMe</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>R3</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OMe</td>
<td>OMe</td>
<td>OMe</td>
<td>OMe</td>
</tr>
<tr>
<td>R4</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>R5</td>
<td>H</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>OH</td>
</tr>
</tbody>
</table>

C-2, 3 dihydro

8th Annual Oxford International Conference on the Science of Botanicals 423

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.

Flavonoid Glycosides from Sutherlandia frutescens

Fu X1, Li X2, Avula B, Smithie TP, Mahbubea W, Syce J, Johnson Q1, Folk W4, Khan IA1–2

1 Department of Pharmacognosy, 2 National Center for Natural Products Research, University of Mississippi, MS 38677, USA

Sutherlandia frutescens (L.) R. Br. (Fabaceae) is a well-known multipurpose medicinal plant in South Africa that has been widely used as a dietary supplement. Our previous paper has reported the isolation and structure elucidation of four novel cycloartenol glycosides from its leaves [1]. Our continuing studies on this medicinally important plant led to the isolation of four new 3-hydroxy-3-methylglutaroyl-containing flavonoid glycosides, sutherlandins A–D. Their structures were elucidated by chemical and spectroscopic methods as quercetin 3-O-β-D-xlylopyranosyl[1→2]-[6-O-(3-hydroxy-3-methylglutaroyl)]-β-D-glucopyranoside (1), quercetin 3-O-β-D-xylopyranosyl[1→2]-[6-O-(3-hydroxy-3-methylglutaroyl)]-β-D-glucopyranoside (2), kaempferol 3-O-β-D-xlylopyranosyl (1→2)–[6-O-(3-hydroxy-3-methylglutaroyl)]-β-D-glucopyranoside (3), kaempferol 3-O-β-D-xylopyranosyl[1→2]-[6-O-(3-hydroxy-3-methylglutaroyl)]-β-D-glucopyranoside (4). These compounds, along with the previously isolated triterpene glycosides, have been served as chemical markers for commercial products derived from S. frutescens.

Acknowledgements: The authors thank Mr. Frank T. Wiggers for the assistance in obtaining NMR spectra, and Dr. Charles L. Cantrell for the assistance in GC analysis. This work is supported in part by “The International Center for Indigenous Phytherapy Studies” funded by NCCAM, grant number 5U1AT00264 and the USDA Agricultural Research Service Specific Cooperative Agreement No. 58-6408-2-0009. References: [1] Fu X, et al. (2008) Nat Prod, 71: 1749–53.

Clerodane and Ent-kaurane Diterpenoids and C13 Nor-isoprenoids from Casearia sylvestris

Wang W1, Ali Z2, Li XC2, Khan IA1–2

1 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, and 2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA

Scutellaria lateriflora L. (skullcap) is native to North America, but now widely cultivated in Europe and other areas of the world. It has been used for over two hundred years as an effective therapy for anxiety, nervous tension, and convulsions [1]. In America, skullcap is regulated as a dietary supplement and has been classified as an “Herb of Undefined Safety” by the FDA. Despite its extensive use, little data exist regarding the chemical constituents of Scutellaria lateriflora. In order to provide the scientific support for the uses of this plant, a systematical chemical study has been conducted. Two new dihydroypropanocoumarins, named scuteflorins A and B, together with the known compounds, decursin, chrysin, oxoroxarin A, wogonin, 5,7-dihydroxy-2′-8-dimethoxyflavone, dihydrochrysin, dihydroxyoxalin A, lupenol, 3×24-dihydroxy-olean-12-en-28-oic acid, 3β,19α-dihydroxy-urs-12-en-28-oic acid, usoric acid, β-sitosterol, daucosterol, palmitic acid, a mixture of arachidic acid, behenic acid and lignoceric acid in a ratio of 2: 1: 0.3, and a mixture of 1-triactanol and 1-dotriactanol in a ratio of 2: 1, were isolated from the aerial parts of this plant. Their structures were established by means of extensive 1D and 2D NMR spectra as well as HRMS data. The absolute configuration of dihydroypropanocoumarins was determined by a comparison of the experimental and theoretical CD spectra. All the compounds except for wogonin and chrysin are reported for the first time from this plant. Acknowledgement: This work is funded in part by the Food Drug Administration contract “Botanical Dietary Supplement: Science-Base for Authentication” FD-U-002071-07. Authors are thankful to Dr. Vaishali Joshi for the authentication of plant material. References: [1] Foster S. (1996), The Business of Herbs, May/June, p.14–16.
New Terpenoids from *Pfaffia paniculata* Kuntze

Li J1, Jadhav AN2, Rumalla CS2, Khan IA1,2

1 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA
2 National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS 38677, USA

Pfaffia (Amaranthaceae) has around ninety species in Central and South American, of which *Pfaffia paniculata* Kuntze (commonly called suma), is the most employed species in commercial preparations in Brazil as "Brazilian ginseng" and has been commonly used for three centuries for the same indications as American and Asian ginseng [1,2]. It is also known as "Para Toda" which means "for all things" since the root of this plant has been used by native Brazilians as a tonic, aphrodisiac, and as a remedy for many types of illnesses, such as diabetes, ulcers, cancer etc [3]. Phytosterols (mainly β-ecdysone), pfaffic acid (hexacyclic nortriterpene) and their glycosides, named pfaffosides A–F (saponins), have been reported from *P. paniculata* [4–7]. The saponins have demonstrated the ability to inhibit the growth of cultured tumor cell melanomas in vitro [6,7]. These saponins and pfaffic acid derivatives were patented as anti-tumor compounds in several Japanese patents in the mid-1980s [9,10]. In the present study, a detailed phytochemical investigation of *P. paniculata* was carried out. Two new nortriterpenoids pfaffine A and B, one monoterpene glycoside pfaffine C, along with the known compounds, ecdysone, 20-hydroxyecdysone, pterosterone, rapisterone, pfaffic acid, pfameric acid, mesembryanthemoidigenic acid, Calenduloside E 6'-methyl ester, oleanolic acid 28-O-β-D-glucopyranoside were isolated from the roots of this plant. Their structures were determined through the extensive analysis of 1D- (1H, 13C, DEPT) and 2D-NMR (COSY, HSQC, HMBC, NOESY) spectra, as well as chemical methods. **Acknowledgement:** This work is funded in part by the Food Drug Administration contract “Botanical Dietary Supplement: Science-Base for Authentication” FD-U-002071-07. Authors are thankful to Dr. Vaishali Joshi for the authentication of plant material. **References:** [1] Vasconcelos JMO (1982), Estudo taxonomico sobre Amaranthaceae no RS, Brasil. Porto Alegre, 151 p. [2] Taniguchi SF, et al. (1997), Phytother. Res., 11: 568–571. [3] Oliveira F, (1986), Revista Brasileira de Farmacognosia, 1: 86–92. [4] Wakunaga Pharmaceutical Co., Ltd., Japan (1984), Jpn. Kokai Tokkyo Koho., 5 pp. [5] Takemoto T, et al. (1983), Tetrahedron Letters, 24, 1057–60. [6] Nishimoto N, et al. (1984), Phytochemistry, 23: 139–42. [7] Nakai S, et al. (1984), Phytochemistry 23: 1703–1705. [8] Oshima M, Gu Y, (2003), Journal of Reproduction and Development, 49: 175–180. [9] Takemoto T, Odajima T, (1984), Jpn. Kokai Tokkyo Koho., 7 pp. [10] Takemoto T, Odajima T, (1984), Jpn. Kokai Tokkyo Koho., 11 pp.

Application of NMR-Based Metabolomics in Assessment of Botanicals

Zhao JP1, Avula B1, Wang YH1, Joshi VC1, Smillie TJ1, Khan IA1,2

1 National Center for Natural Products Research, 2 Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, USA

Metabolomics is increasingly being used in a broad range of sciences including systems biology, drug discovery, molecular and cell biology and other medical and agricultural sciences [1,2]. The metabolomic analyses of Hoodia (*Hoodia gordonii*), Maca (*Lepidium meyenii* Walp.) and Ginkgo (*Ginkgo biloba*), as well as their products, were performed using 1H-NMR spectroscopy and multivariate statistical analysis. The different extraction conditions for sam-

Constituents from Sarcotestas of Ginkgo Fruits
Zhao H1, Sun LZ2, Elsohly MA1, Avery MA1, Khan IA1,2
1 National Center for Natural Products Research, University of Mississippi, MS 38677, USA
2 Department of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA

Ginkgo tree (Ginkgo biloba, Family: Ginkgoaceae) is called as a living fossil, as one of the oldest trees still living on earth. The tree has a high economic value. Numerous ginkgo plantations have been developed over the world because of the increasing demand of ginkgo leaves [1]. Unlike the leaves, the fruits of ginkgo have not been well utilized. A ginkgo fruit consists of a soft and fleshy section (the sarcotesta), and a hard section (the sclerotesta). Previous pharmacological studies have reported that the extract of sarcotestas has various bioactivities including antibacterial, anti-tumor, pesticidal, mutagenic, allergic, anti-HIV and immunomodulatory properties [2,3]. In the present study, a phytochemical investigation of the constituents of sarcotestas of ginkgo fruits led to isolation and identification of twenty three compounds. Four of them were new (compounds 1–4). The structures of compounds 1–3 are unusual and have not been reported in nature yet. Their structures were elucidated by using spectroscopic, spectrometric and chemical methods. The biosynthesis pathways of compounds 1–3 are also proposed. Acknowledgements: The authors would like to thank Dr. Bharathi Avula for recording the mass spectrometric data. This work was funded by the FDA/CFSAN grant entitled “Science Based Authentication of Dietary Supplements” Number 2 U01 FD 002071-07. References: [1] van Beek, T. A. (2000) Ginkgo biloba. Harwood Academic, Australia. [2] Duan, R. (2002) Shipin Yu Fajiao Gongye, 28 (8), 57–61. [3] Jaggy, H.; Koch, E. (1997) Pharmazie, 52(10), 735–738.

Labisia pumila (Blume) Fern.-Vill., a short herbaceous plant belongs to a small genus of the Myrsinaceae family. It grows widely throughout the Malaysian rain forest and is locally known as Kacip Fatimah. The traditional practitioners have used L. pumila to maintain a healthy female reproductive system, to cure delayed fertility and to regain body strength. Kacip Fatimah is also used to reduce excessive gas, treat flatulence, dysentery, dysmenorrhea, gonorrhea and bone sickness [1]. The extract of the plant is also used as a drink to gain energy. There is a remarkable boom in the market for Kacip Fatimah, unfortunately there is no scientific report on its chemical constituents to support these claims. In this study we explored the chemistry of L. pumila for the first time. A multi-class of natural products belonging to phenolic compounds containing long chains, glycerogalactolipid, cerebrosides, alpha-tocopherol, sterols and lipids were isolated from the methanolic extract of L. pumila. Their structures were determined by chemical and extensive spectroscopic methods including NMR and HRESIMS techniques. Acknowledgement: The work was supported by the United States Food and Drug Administration (FDA) Specific Cooperative Agreement No U01 FD 002071-07. References: [1] Effendy AMD, et al. (2006), Journal of Sustainability Science and Management, 1: 40–46.

Terminalia chebula Retz., a flowering evergreen tree belongs to the genus Terminalia of the Combretaceae family. Its fruit has been traditionally used for household remedy for human ailments. T. chebula...
la has been extensively used in Ayurveda, Unani and homeopathic medicine. Though it is a rich source of tannins and other phenolic compounds, some triterpenes and/or their glycosides were also reported from T. chebula [1]. For further phytochemical discoveries we investigated this plant and isolated oleanolic acid-derived triterpenes. The structures were determined by spectroscopic methods including NMR and HRESIMS techniques.

Acknowledgement: The work was supported by the United States Food and Drug Administration (FDA) Specific Cooperative Agreement No. U01 FD 002071-07. References: [1] Chattopadhyay RR, Battacharyya SK, (2007), Pharmacognosy Reviews, 1: 151–156.

Table 1 Validation Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AA</th>
<th>MA</th>
<th>AS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Linearity range (ng/spot)</td>
<td>200 – 600</td>
<td>200 – 600</td>
<td>100 – 500</td>
<td>100 – 500</td>
</tr>
<tr>
<td>2 Correlation coefficient</td>
<td>0.999</td>
<td>0.998</td>
<td>0.997</td>
<td>0.998</td>
</tr>
<tr>
<td>4 LOD (ng/spot)</td>
<td>30</td>
<td>60</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5 LOQ (ng/spot)</td>
<td>180</td>
<td>200</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6 Specificity</td>
<td>Specific</td>
<td>Specific</td>
<td>Specific</td>
<td>Specific</td>
</tr>
<tr>
<td>7 Regression equation</td>
<td>(Y = 94.580 + 8.961 X)</td>
<td>(Y = 61.937 + 3.124 X)</td>
<td>(Y = 22.600 + 0.495 X)</td>
<td>(Y = 12.773 + 0.113 X)</td>
</tr>
<tr>
<td>8 Rf</td>
<td>0.72</td>
<td>0.61</td>
<td>0.17</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Centella erecta (L.f.) Fern. is very closely related species to C. asiatica that is commonly found in the southern US and is easily confused with each other. Although C. asiatica has been thoroughly investigated, no compressive chemical studies were done on C. erecta [1,2]. A new triterpene (2α,3β, 4a)-23-(sulphonyl)-2,3-dihydroxyurs-12-en-28-oic acid (6), Betulabuaside A (7), 3-oxo-o-linolenyl-9-β-D-galactopyranosyl-12-β-D-glucopyranosyl ester (8), vomifoliol-9-β-D-glucopyranoside (roseoside) (9), 1,8-heptadecadiene-4,6-diyne-3,10-diol (10), (25)-1-O-stearoyl-2-O-stearoyl-3-O-[α-D-galacto-pyranosyl-(1′-6′)-β-D-galactopyranosyl] glycerol (11), (25)-1-O-linolenyl-2-O-linolenyl-3-O-[α-D-galactopyranosyl-(1′6′)-β-D-galactopyranosyl] glycerol (12) (Fig. 1) were isolated from the whole plant of Centella asiatica and their structures were elucidated using 1H-NMR, 13C-NMR, HSQC, HMBC, COSY and HRMS as well as comparison with reported data. Acknowledgements: This research is funded in part by The United States Department of Agriculture Specific Cooperative Research Agreement Number 58-6408-6-067 and the FDA/CFSAN grant entitled Science Based Authentication of Dietary Supplements Number 2 U01 FD 002071-07. The Authors would like to thank Dr. Vaishali Joshi for authenticating the plant material. References: [1] Mabberley DJ, (1997), The Plant Book: A portable dictionary of the higher plants. Cambridge University Press. [2] Shakir JS, et al. Nat. Prod. Radiance 6(2): p. 158–170, (2007).
Centella asiatica and Centella erecta were analyzed using high performance thin layer chromatography (HPTLC). The separation was achieved on silica gel 60F254 HPTLC plates using chloroform: methanol: water (13.0:6.5:0.5 v/v/v). Quantitation was performed using densitometry in absorption-reflection mode at 600 nm after a color development with anisaldehyde reagent. Calibration plots showed a good linear relationship with r = 0.999, 0.998, 0.997, and 0.998 for asiatic acid, madecassic acid, asiaticoside, and madecoside, respectively. The established method was validated in terms of LOD and LOQ, linearity. **Acknowledgements:** This research is funded in part by The United States Department of Agriculture Specific Cooperative Research Agreement Number 58-6408-6-067 and the FDA/CFSAN grant entitled Science Based Authentication of Dietary Supplements Number 2 U01 FD 002071-07. **References:** [1] Shakir JS, et al. (2007), Nat. Prod. Radiance, 6 (2): 158–170. [2] de Paula Reis, et al. (1996), Revista Brasileira de Farmácia, 77(2): 71–72.

Table 2 Percentage (w/w) of asiatic acid, madecassic acid, asiaticoside, and madecoside in plant sample.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Percentage in dry plant material</th>
<th>AA</th>
<th>MA</th>
<th>AS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. asiatica</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>3.6</td>
<td>2.0</td>
</tr>
<tr>
<td>C. erecta</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>4.5</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Fig. 1 (A) Centella asiatica, (B) Standard mix, (C) Centella erecta.

Fig. 1 (A) Centella asiatica, (B) Standard mix, (C) Centella erecta.

P-44

Coumarins and Triterpenoids from Ludwigia hyssopifolia L.

Rao AS1, Ali Z1, Smillie TJ1, Khan IA1,2

1 National Center for Natural Products Research, School of Pharmacy, The University Of Mississippi, University, MS, 38677, USA
2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

Ludwigia hyssopifolia Linn. (Synonym Jussiaea hyssopifolia G. Don, Jussiaea linifolia Vahl non Ludwigia linifolia Poir. Family-Onagraceae; Bengali name – Lalbunlonga) is extensively grown in Bangladesh, India and Ceylon. This plant is considered as an astrigent, anthelmintic, carminative and diuretic. A decoction of this plant is used for the treatment of diarrhea, dysentery, flatulence, leucorrhoea, spitting of blood, vermifuge and purgative [1]. The leaves are used in poultices for orchitis and glands in the neck. Previous phytochemical investigation of Ludwigia hyssopifolia found piperine as a potential marker compound in addition to the isolation of vitexin, isovitexin, orientin and isoorientin [2]. As a continuation of our dietary supplement work we isolated a series of coumarins and triterpenoids from this plant. Compounds 1–4 are known, but this is the first report of their isolation from this plant.

P-45

Shikimic Acid as a Marker Compound from Ludwigia alternifolia L.

Rao AS1, Smillie TJ1, Khan IA1,2

1 National Center for Natural Products Research, School of Pharmacy, The University Of Mississippi, University, MS, 38677, USA
2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

Ludwigia alternifolia L belongs to the Onagraceae family and is distributed throughout the Northeast, Midwest and Southern US. Shikimic acid (Fig. 1) was first isolated in 1885 by Eijkman from the fruit of the Japanese plant Illicium religiosum Sieb [1]. The elucida-
tion of its structure nearly 50 years later [2, 3] and the discovery that shikimic acid was found to play an important role in the biosynthesis of the three aromatic amino acids phenylalanine, tyrosine, and tryptphan [4] resulted in an intensified research effort towards its synthesis [5–9], isolation from other organisms [10], identification of its metabolites [11, 12] and its transformation into potential chemotherapeutics. This latter area of research has lead to the synthesis of various bioactive compounds from shikimic acid. The research outlined in this presentation is the first report for the isolation of shikimic acid from this plant.

Structure Elucidation and Absolute Configuration of Megastigmane Derivatives from Cissus quadrangularis Linn

Rao AS1, Ali Z1, Slade DI, Smilie TJ1, Khan IA1,2

1 National Center for Natural Products Research, School of Pharmacy, The University Of Mississippi, University, MS 38677, USA

2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA

Cissus a genus of approximately 350 species of a woody climber (Family: Vitaceae) includes Cissus quadrangularis Linn (Veldt grape, winged treebine) which is often used as a medicinal plant. Commonly known as “bone setter”, the plant can be found in the warmer regions of India, Ceylon, East Africa, Malaysia and Thailand [1]. C. quadrangularis is used as a common food supplement in southern India, while the stem is traditionally used for the treatment of gastritis, bone fractures, skin infections, constipation, eye diseases, piles, anemia, asthma, irregular menstruation, burns and wounds [2, 3]. The fresh stem and leaves of C. quadrangularis is used for the treatment of hemorrhoids, menstrual disorders, scurvy and flatulence [4–8]. Phytochemical analysis of C. quadrangularis resulted in the identification of several classes of compounds e.g., flavonoids, triterpenoids and stilbene derivatives. As part of our continuing program to identify chemical and/or biomarkers of dietary supplements, we isolated four new megastigmane derivatives (1–4), and thirteen known compounds (5–17), trans-3-Oxo-ionol (5), corchoinoside C (6), resveratrol (7), pallidol (8), quadrangularin A (9), quadrangularin B (10), quadrangularin C (11), parthenecisbin A (12), quercetin 3-O-α-L-rhaminoside (13), quercetin 3-O-β-D-glucopyranoside (14), isoengeletin (15), (-)-isoraciresinol 3-O-β-D-glucopyranoside (16) and avaculin (17) from Cissus quadrangularis Linn. Acknowledgements: The work was supported by the United States Department of Agriculture, Agricultural Research Service Specific Cooperative Agreement Number 58-6408-06-067. Thanks to Mr. Frank Wiggers for NMR work, Dr. Barathi Avula for HRESIMS and Dr. Vaishali C Joshi for plant identification at the National Center for Natural Products Research.

References:

Psoralens, also known as furanocumarins and coumarin derivatives, are naturally occurring or synthetic tricyclic aromatic compounds. They reveal interesting photobiological activities such as skin photosensitization, characterized by the onset of erythema followed by dark pigmentation. The related angular isomers, namely angelicin, are also present in plants and have been chemically synthesized [1]. Psoralens are also of interest because they are used as a probe in molecular biology and nucleic acid chemistry [2]. Coumarins can be classified in the latter group [3]. In this paper we discuss the synthesis of psoralens (Scheme I and II). Currently there is only one report of antifungal activity reported for angular coumariins [4–5]. As part of our ongoing research program to identity chemical and/or biomarkers of dietary supplements we have synthesized a series of psoralens for biological evolution.

P-47

Synthesis of Psoralens

Rao AS1, Smilie TJ1, Khan IA1,2

1 National Center for Natural Products Research, School of Pharmacy, The University Of Mississippi, University, MS, 38677, USA

2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA
A new potent antiinfective and antiparasitic 2,3-dihydro-1H-indolizinium chloride, (1), was isolated from Prosopis glandulosa Torr. var. glandulosa. Three additional new (2–4) and one known (5) indolizidines were also isolated, and the dihydrochloride salts of 1–3 (compounds 6, 7 and 8) were prepared. The structures were determined by 1D and 2D NMR and mass spectra. Compound 1 showed potent in vitro antifungal and antibacterial activities against Cryptococcus neoformans, Aspergillus fumigatus, methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare. The remarkable fungicidal activity of 1–4 against C. neoformans and 2, 3, and 5 against A. fumigatus were similar to amphotericin B, but > 2–4-fold more potent than 6–8. Prosopisolide (1) showed potent in vivo activity at 0.0625 mg/Kg/day/ip for 5 days in a murine model of cryptococcosis by eliminating ~76% of C. neoformans infection from brain tissue compared to ~83% with amphotericin B at 1.5 mg/Kg/day. Compounds from brain tissue compared to ~83% with amphotericin B at in vivo activity at 0.0625 mg/Kg/day/ip for 5 days in a murine model of antimalarial activity with an ED50 value of ~2 mg/Kg/day/ip.

Acknowledgements: The authors sincerely thank Dr. Alice M. Clark, Vice-Chancellor for Research and sponsored programs, for her valuable advice on antifungal activity of compounds, and Dr. Troy Smillie, Dr. Chuck Dunbar, Ms. Sharon Sanders, Mr. John Trott, Ms. Marsha Wright, Dr. Anupam Pradhan, Ms. Lavanya Madgula and Mr. Mohammed A. Hammad, NCNP, for plant acquisition and biological work. This work was supported in part by the USDA-ARS Specific Cooperative Agreement No. 58-6408-2-0009, NIH, NIAID, Division of AIDS, Grant No. AI 27094, and MMV Grant No. 06-2026.

Postia balsamea (Aphyllophorales, Basidiomycota) is the causal agent of root rot and butt rot in balsam fir (Abies balsamea family Pinaceae). Mechanical or insect caused wounds to the roots or basal areas of trees provide entrances for the fungi. Root rot and butt rot cause considerable losses in softwood production [1]. Our previous studies reported the presence of polyacetylene compounds having phytotoxic activity from Postia balsamea [2]. We report herein on the isolation and characterization of new phenolic compounds methyl 3-(3,5-dichloro-4-methoxyphenyl)-2-hydroxypropanoate (1), 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoic acid (2), 3-(3,5-dichloro-4-hydroxyphenyl)-2-hydroxypropanoic acid (3) along with two known lanostane-type triterpenes, acetyl eburicoic acid and eburicoic acid from the ethyl acetate extract of the fermentation broth of this fungus from China. Science Press, Beijing, China. [3] Takaishi Y. et al. (1987), Phytochemistry, 26: 2341–2344.

Chemical Constituents of Postia balsamea

Kumarihamy M1,2, Nanayakkara NPD2, Ferreira D1,2
1 Department of Pharmacognosy,
2 National Center for Natural Products Research,
Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677

Postia balsamea (Aphyllophorales, Basidiomycota) is the causal agent of root rot and butt rot in balsam fir (Abies balsamea family Pinaceae). Mechanical or insect caused wounds to the roots or basal areas of trees provide entrances for the fungi. Root rot and butt rot cause considerable losses in softwood production [1]. Our previous studies reported the presence of polyacetylene compounds having phytotoxic activity from Postia balsamea [2]. We report herein on the isolation and characterization of new phenolic compounds methyl 3-(3,5-dichloro-4-methoxyphenyl)-2-hydroxypropanoate (1), 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoic acid (2), 3-(3,5-dichloro-4-hydroxyphenyl)-2-hydroxypropanoic acid (3) along with two known lanostane-type triterpenes, acetyl eburicoic acid and eburicoic acid from the ethyl acetate extract of the fermentation broth of Postia balsamea. These two triterpenes have previously been isolated [3,4] and found to inhibit the proliferation of human HL-60 myeloid leukemia cells in a dose dependent manner [4].

Biosynthesis of Salvinorin A: Overexpression and Biochemical Characterization of Carboxy Methyltransferase from EST of Salvia divinorum Glands

Kutzzeba LM1, Zjawiony JK1, Koo HF2, McDowell E3
1 Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677, USA
2 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
3 University of Arizona, Department of Plant Sciences and BIOS Institute, Tucson, AZ 85721, USA
4 National Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA

Abuse of unregulated substances by young adults has been a great concern of the US and international community. The active component of Salvia divinorum, salvinorin A (1) has a potent affinity to kappa opioid receptor in CNS. We studied the biosynthesis of a diterpenoid through the isolation of RNA and construction of cDNA library. Sequencing of the genetic material resulted in building an EST library containing all genes involved in biosynthetic assembly of 1. We then cloned and overexpressed carboxy methyltransferase (CMT) gene in Escherichia coli to determine the substrate for the enzyme, and biochemically characterize it. We have employed 14C-SAM, and five different substrates to test for the CMT activity in the cell free assay. We observed methylation of C-18 carboxylic group in divinatorin A, divinatorin C and hardwickiic acid, but not in highly oxygenated substrates like salvinorin A and B acids. This strongly suggests that CMT is substrate specific and that it is involved in the early stage of the pathway. Methyl esters of those substrates were independently synthesized to determine the products of the enzymatic reaction. Future work will involve purification of the enzyme and determination of K_M and K_cat.

Free Energy Calculations on the Binding of Natural Latrunculins and Semi-synthetic Derivatives to G-Actin

Dorgan PR1, Odde S1, Hamann MT2,3, Doerkensen RF1,3
1 Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS 38677, Fax: 662-915-5638, E-mail: rjd@olemiss.edu
2 Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677
3 National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677

Latrunculins are significant biological molecules isolated from Neogomata species, characterized by a macrocyclic lactone ring and a 2-thiazolidinone moiety. In vitro experiments revealed that the latrunculins disrupt actin polymerization. Despite having a wide variety of biological activities, their direct therapeutic use is limited by cytotoxicity. However modified latrunculins show great potential to have a wide range of useful biological activities including related to Alzheimer’s disease [1,2]. We have designed a few synthetically feasible analogs of Latrunculin B with intentions to have compounds with reduced toxicity and better binding. Both naturally available and newly designed molecules were subjected to induced fit docking into G-actin. Molecular dynamics simulations and binding free energy (BFE) calculations of G-actin and the latrunculins were carried out. The docking studies revealed the binding mode of latrunculin B and analogs and were helpful to suggest possible modifications to reduce the toxicity [3]. The BFE calculations agreed well with actin polymerization inhibition data demonstrating that the recently isolated oxalatrunculin B binds more weakly than latrunculin A and B to G-actin. The binding of the latrunculins to G-actin and details of the protein-ligand interactions explain the decrease in activity of oxalatrunculin B and semi-synthetic analogs, reduced inhibition which should be beneficial for avoiding general toxicity.
Chemical Investigation of Two Species of the Family Cycadaceae
Ferreira D1, Zjawiony JK1, Moonwad AL1,2, Hifnawy M2, Hetta M2
1 Department of Pharmacognosy, and National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
2 Department of Pharmacognosy, School of Pharmacy, University of Beni Suef, Egypt

Cycas is the only genus of the family Cycadaceae, order Cycadales. Chemical investigation of the constituents of the leaves of Cycas revoluta Thunb. and C. circinalis L. afforded the lignan lariocresinol (1), the flavanone naringenin (2) and 10 biflavonoids (3–12) which are derivatives of amentoflavone (A) and hinokiflavone (B). Five of these compounds were previously isolated [1,2] and seven are reported for the first time in C. revoluta Thunb. and C. circinalis L. The structures of these compounds have been established by detailed analysis of their spectroscopic, mainly 1D and 2D NMR and CD data. The antimicrobial, antimalarial, and antiileishmanial activities were tested. References: [1] Varshney AK, et al. (1973), Indian Journal of Chemistry, 11(12): 1209–1214. [2] Gadek PA, (1982), Phytochemistry, 21(4): 889–890.

Productivity and Biochemical Composition of Peppermint Cultivars
Al-Amier H1,2, Baek JP1, El-Hela AA1, Helaly A1, Craker LE1
1 Plant, Soil, and Insect Sciences Department, University of Massachusetts, Amherst, MA 01003
2 Horticulture Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt

Peppermint (Mentha × piperita L., Lamiaceae) is widely cultivated for the essential oil used worldwide in the confectionary and pharmaceutical industries. To determine oil characteristics of peppermint plants suitable for cultivation in salt-stress conditions of Egypt, 57 peppermint cultivars, obtained from National Clonal Germplasm Repository, Corvallis, Oregon were grown in a greenhouse at the University of Massachusetts-Amherst during 2007 and 2008 to determine growth characteristics and oil production. The essential oil was extracted from fresh aerial parts of each cultivar using steam distillation for 3 h to extract a pale, yellow colored, aromatic oil. The oils were analyzed by gas chromatography (FID, Cupelcowax 10 capillary column, 30 m × 0.25 mm film). Constituents were identified by co-chromatography with known standards. A high degree of variability among the cultivars for fresh weight and total essential oil was observed with the highest fresh weight per plant was obtained from cultivars labeled PM09 (144.5 g plant⁻¹) and PM01 (138.0 g plant⁻¹). The highest essential oil content was obtained from cultivars labeled MP07 (733.3 µL plant⁻¹) and MP52 (520.0 µL plant⁻¹). Menthone, menthol, and pulegone were the major constituents in all tested oils. The highest menthol content was measured in the oils from cultivars MP12 (85.93%) and MP56 (53.76%).

Japanese spicebush (Lindera obtusiloba Blume, Lauraceae), which grows wild in mountainous areas of Korea, Japan and Northeast China, is known for odd-shaped leaves that are a light green color in the spring, a dark green color in the summer, and a vivid gold color in the fall. In Korea, the plant stem and bark have been used in traditional medicine and as an insect repellent, while spring leaves were used in making cookies and tea and the seed essential oil was used for lamplight and hair oil. To understand the multiple uses of plant organs, this study examined the essential oil from flowers, leaves, stems, and roots from plants collected in Gyeong-Gi-Do, located in the northern part of South Korea. The essential oils were obtained by steam distillation/extract methodology using a Likens-Nickerson apparatus. Each extracted oil was analyzed by gas chromatography–mass spectrophotometry using an Agilent 6890 N GC connected to a Agilent 5975D (Agilent, U.S.A.). A HP-INNOWax polyethylene glycol capillary column (30 m × 0.25 mm) was used and the constituents were identified by comparison of the spectral data with that in the NIST mass spectral library, ver. 2.0 (NIST, U.S.A.). The essential oil content of the plant organs varied with the flower (0.25% F.Wt.) and young stem (0.23% F.Wt.) containing a higher concentration of oil than the leaf (0.08%, F.Wt.), old stem (0.05% F.Wt.) and root (0.05% F.Wt.) Main oil constituents were α-phellandrene and β-phellandrene in flower oil, caryophyllene in leaf oil, limonene in the stem oil, and camphene in the root oil.

A chemical analysis of bluebird vine (Petrea volubilis, Verbenaceae) (additional common names, queen’s wreath and sandpaper vine) cultivated in Egypt as a botanical insecticide, identified the primary constituents as β-amyrin, stigmastanol, β-sitosterol, lupeol, and ursolic acid. The essential oil, extracted from fresh herb by hydrodistillation and analyzed by gas chromatography, had cineole (26.8%)
as the major constituent. The saponifiable and unsaponifiable constituents, subjected to GLC/MS for identification, indicated the presence of 17 saponifiable constituents with the major constituent being phytol (19%). A total of 14 fatty acids were identified as their methyl ester with methyl palmitate (35.1%) being the major constituent. Free sugars and polysaccharides were measured by HPLC and indicated the presence of sucrose, galactose, glucose, rhamnose, xylose, and arabinose. The petroleum ether and essential oil demonstrated antimicrobial activity against several microorganisms. The essential oil demonstrated insecticidal effects against the common housefly (Musca domestica L.) larvae with mortality rates of 80–100%.

Fig. 1 N-methylcarbamates pesticides.

Polychlorinated biphenyls (PCB) are common environmental contaminants that have been linked to many detrimental health conditions in humans and marine life. These industrially produced compounds were ubiquitously used in capacitors, transformers, and frequently as coolants. PCBs were prized for their stability and lack of reactivity; however, these same properties allow PCBs to become persistent organic pollutants (POPs) in many environments. A number of different bioremediation strategies have been proposed, but as yet, no one method has been completely successful for PCB removal in the environment. Studying the microbial communities that survive within the PCB containing sediments may allow a better understanding for the anaerobic dehalogenation of these contaminants. In this study sediment samples were collected from eight locations with varying levels of PCB contaminants. Microbial DNA extractions, followed by PCR amplifications were successfully preformed utilizing a previously designed primer set used for amplifying known dechlorinating anaerobes. Restriction length polymorphisms (RFLP) analysis of the constructed clone library has shown that the diversity of this population is quite limited in a number of the Chesapeake Bay sediments. The limited diversification of anaerobes within the sediments may imply that the PCBs are acting as selection factors to facilitate the more adaptive anaerobes. Our future work will be focused on closer examination of the dominate anaerobes. Examination of the microbes associated with PCB dechlorination in contaminated sediments will provide a better understanding of this process in the environment.

Downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Development and validation of a reliable analytical method to analyze complicated natural ingredients derived from popular medicinal plants. Aloe vera has been challenging. Fresh Aloe vera consists of three major components: acetylates polysaccharides, glucose, and malic acid, which are markers for good aloe materials. High content of lactic acid and acetic acid indicate bacterial degradation, hydrolysis and thermal degradation of the material. A proton NMR method was developed by Dr. Bernd Diehl at Spectral Service, Köln, Germany, and accepted by IASC as an analytical method to certify aloe based ingredients and finished products. This presentation will report the validation of the quantitative NMR method according to the AOAC guidelines. The validation includes specificity, linearity, accuracy, robustness, repeatability and reproducibility, limit of detection and limit of quantification. Data was collected with two different NMR instruments in two independent NMR labs. This simple and non-destructive 1H NMR method was able to quantify the amount of acetylated polysaccharides, glucose, malic acid, lactic acid and acetic acid in Aloe vera powder. Acknowledgements: Support from the International Aloe Science Council (IASC) is gratefully acknowledged.

Steroidal alkaloids are naturally occurring nitrogen-containing compounds in many edible or medicinal plants, such as potato, tomato, Fritillaria and American hellebore, which possess a variety of toxicological and pharmacological effects on humans. Such biological effects of these compounds create a critical demand for developing a sensitive and selective analytical method to accurately evaluate the presence and content of the major and minor steroidal alkaloids in these plants. In this report, we present a high-selective and sensitive method for rapid analysis of steroidal alkaloids in Fritillaria species, utilizing selective solid-phase extraction and rapid liquid chromatography/time-of-flight mass spectrometry (SPE-RRLC/TOF-MS). The selective solid-phase extraction step was developed using a mixed-mode cation-exchange/reversed-phase cartridge (Oasis MCX). The strong cation exchange capacity of MCX can selectively capture basic analytes and remove acidic
and neutral compounds in the plant extract, thereby reducing the matrix effect and improving the MS detection sensitivity. The sample recoveries on Oasis MCX cartridges were found to be > 80%. The analysis of steroidal alkaloids was carried out by RRLC/TOF-MS. The use of RRLC can shorten analytical time and improve chromatographic resolution, and TOF-MS provides abundant structure information by accurate mass measurements for each molecular ion and fragment ions at different fragmentor voltage. As a result, the SPE-RRLC/TOF-MS was successfully used for simultaneous determination of 26 steroidal alkaloids in different *Fritillaria* species in a single run within 18 min (Fig. 1), which is 5-times faster than conventional HPLC/TOF-MS method [1].

Acknowledgements: Financial support for this research from the cultivation fund of the key scientific and technical innovation project, Ministry of Education of China (No. 2004-295).

P-63

Determination of Terpene Lactones in Ginkgo Biloba Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry

Huang L1, Sun S1

1 Siliker JR Laboratories ULC, #12-3871 North Fraser Way, Burnaby, BC, Canada, V5G 5J6

Ginkgo biloba (ginkgo), used in traditional Chinese medicine for many centuries, is one of the most popular botanical dietary supplements in North America. Commercial ginkgo products are usually standardized to the levels of flavonoids and terpene lactones (ginkgolides A, B, C, J, and bilobalide) based on the biological activities. Flavonoids have strong UV absorption. However, terpene lactones are very inactive to UV, refractive index, and ELSD detections and difficult HPLC separation to eliminate interferences and to resolve all analytes even though their concentrations are high in ginkgo extracts. In this study, we developed and validated a sensitive, accurate and reliable assay method for determination of terpene lactones in ginkgo products using HPLC-electrospray tandem mass spectrometry (LCMSMS) technique, which minimized the requirements of major sample cleanup and chromatographic resolution. The validation of the method showed that the analyte recoveries are in the range of 90–110%, and the relative standard deviations are less than 10% for all five analytes, ginkgolide A, B, C, J and bilobalide. References: [1] Yongkai S, et al. (2005), J Mass Spectrom, 40: 373–379.

P-64

The NIH/ODS Analytical Methods and Reference Materials Program for Dietary Supplements: Five-Year Accomplishments and Future Directions

Betz MJ1, Sadananda LG2, Fisher KD1, Coates PM1, Klein M1, Engel J1, Nguyen Pho A2, Sharpless KE1, Sander LC1, Wise SA1, Rimmer CA1, Phinney KV1

1 Office of Dietary Supplements, U.S. National Institutes of Health, Bethesda, MD, 20892 USA
2 U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
3 National Institute of Standards and Technology, Gaithersburg, MD, 20899 USA

Quality of natural health products remains a challenge to regulators, researchers, and manufacturers. Quality parameters include specifications for sanitation, contaminants, and content of natural chemicals. Validated analytical methods and reference materials to ensure the purity and strength of natural health products are essential. Because these products and their ingredients are often complex mixtures they pose analytical challenges, and methods validation may be difficult. In response to concerns about quality, in 2002 the U.S. Congress directed the Office of Dietary Supplements at the National Institutes of Health to accelerate methods validation, and the Analytical Methods and Reference Materials Program (AMRM) was created. The program is stakeholder driven and provides a coordinated approach to validation that facilitates methods validation and production of reference materials. The major accomplishments of the first five years of the AMRM program involve collaborative efforts with FDA, AOAC, and NIST. The program has resulted in 18 collaborative studies of analytical methods. Twelve methods have been approved as Official Methods of Analysis (OMA), and 3 of these are final action OMA. The NIST reference materials project has resulted in the production of 5 suites of standard reference materials, with an additional 12 suites in various stages of completion. The NIST has also created a pilot Laboratory Quality Assurance Program that will assist laboratories to become proficient at analysis. A more detailed account of these accomplishments and an outline of the future scope and direction of the program will be presented.
The roots of *Caulophyllum thalictroides* is traditionally used for the treatment of menstrual difficulties and as an aid in childbirth. *C. thalictroides* is known to contain saponins which are considered to be responsible for the uterine stimulant effects together with teratogenic alkaloids [1]. A comparison study between HPLC-UV-ELSD, UPLC-UV-ELSD and HPTLC methods was presented for the determination of major alkaloid and triterpene saponins from roots of *Caulophyllum thalictroides* (blue cohosh) and dietary supplements claiming to contain blue cohosh. The procedure involves the common extraction of the alkaloid and saponins from the plant and dietary samples. By liquid chromatography method with PDA and ELSD, C18 column, using gradient mobile phase of water and acetonitrile, both compounds was achieved with a Gemini NX reversed phase C18 column, using gradient mobile phase of water and acetonitrile, both containing 0.1% acetic acid, aided with a detection using a PDA detector. The methods were successfully used to analyze different dietary products. For the products containing blue cohosh, there was a significant variability in the amounts of the triterpene saponins. The compounds in plant materials and commercial products of blue cohosh were further confirmed by LC-MS-TOF.

Fig. 1 HPLC (A, B) and UPLC (C, D) chromatograms of a mixture of standard (A, C), and roots of blue cohosh (B, D).

Fig. 2 Comparison of blue cohosh with dietary products by HPTLC method. Tracks: 1 – 3, 7, 8; dietary supplements, 5, standard mix-8; 4 & 6, roots of blue cohosh under visible light (Saponins) (A) and at 366 nm (Magnoflorine) (B).

Acknowledgements: This research is funded in part by “Science Based Authentication of Dietary Supplements” Funded by the Food and Drug Administration grant number 2 U01 FD 002071-07. The authors would like to thank Annette Ford, University of Mississippi for extraction of samples. References: [1] Ganzer M, et al. (2003) Phytochem Anal, 14: 1–7.

Caralluma fimbriata, Fam. Asclepiadaceae, is a succulent plant and plants from *Caralluma* genus occur throughout Africa, and Asia, majority being indigenous to the Indian subcontinent and Arabian peninsula. Recently it has gained popularity as a weight-loss dietary supplement [1]. An HPLC method with UV detection for analysis of five pregrenane compounds from *Caralluma fimbriata* was developed. The simultaneous chromatographic separation of the five compounds was achieved with a Gemini NX reversed phase C18 column, using gradient mobile phase of water and acetonitrile, both containing 0.1% acetic acid, aided with a detection using a PDA detector. This method was applied to the fingerprint identification of three plant materials of *C. fimbriata* and seven dietary supplements containing *C. fimbriata*. The five pregnane derivatives, busercin (1), caraumbelloside I (2), caraumbelloside III (3), caraumbelloside II (4)
and caraumbellogenin (S) have been quantitatively identified in the plant extracts. The limit of detection (LOD), and limit of quantitation (LOQ) were in the range from 1–5 µg/mL, and 3–15 µg/mL for compounds 1–5, respectively. This method also provides a distinction between the chromatographic profiles of *Caralluma*, *Hoodia*, and *Opuntia* spp., and thus can be aptly employed to distinguish between these plant materials or the botanical products thereof. In the ES positive ion mode, the [M+Na]+ ions at m/z 373.23, 679.33, 841.41, 517.27 and 355.22 were observed for compounds 1–5.

The rhizomes of turmeric (*Curcuma longa* L., Zingiberaceae) play an important role as a coloring agent in foods, cosmetics and textiles [1]. The main yellow bioactive substances in the rhizomes are due to curcumin and two related demethoxy compounds, demethoxycurcumin and bisdemethoxycurcumin. Turmeric has been reported to possess anti-inflammatory, hepatoprotective, antitumour, antiviral activities, anticancer activities and is also used in gastrointestinal and respiratory disorders [2–3]. An HPLC method was developed for the determination of curcuminoids from roots of *Curcuma longa* L., different species of *Curcuma* (*C. zedoaria, C. phaeaculis, C. wenyujin* and *C. kwangsiensis*) and dietary supplements that claim to contain *C. longa*. The separation was achieved within 3.5 minutes by using C-18 column material, a water/acetonitrile mobile phase, both containing 0.05% formic acid gradient system and a temperature of 35 °C. The method was validated for linearity, repeatability, limits of detection (LOD) and limits of quantification (LOQ). The limits of detection and limits of quantification of curcuminoids were found to be 0.01 µg/mL and 0.035 µg/mL, respectively. The wavelength used for quantification with the diode array detector was 420 nm for curcuminoids and 240 nm for Ar-turmerone. The total content of curcuminoids was found to be in the range from 0.825–35.37% in different species of *C. longa* and dietary supplements. The curcuminoids were not detected in roots of *C. wenyujin* and *C. kwangsiensis*. The developed method is simple, economic, rapid and especially suitable for quality control analysis of curcuminoids. **Acknowledgements:** This research is funded in part by “Science Based Authentication of Dietary Supplements” Funded by the Food and Drug Administration grant number 2 U01 FD 002071-07. The authors would like to thank Dr. Aruna Weerasooriya, University of Mississippi for providing the plant samples and Annette Ford, University of Mississippi for extraction of samples. References: [1] Sekar N, (2004), Colourage, 51: 59–60. [2] Ammon HTP, Wahl MA, (1991), Planta Med, 57: 1–7. [3] Radha KM, et al. (2006), Life Sci, 78: 2081–2087.

Fig. 1 Comparison of HPLC profiles of mixed standards (A); *Caralluma fimbriata* extract (B) and plant material (C), *Hoodia gordonii* (D) at wavelength 205 nm. (1) Boucerin, (2) Caraumbelloside I, (3) Caraumbelloside II, (4) Caraumbelloside III, (5) Caraumbellogenin.

Fig. 1 UPLC Chromatograms of a mixture of standard (A), roots of *C. longa* (B–C) and dietary supplement (D) at 254 nm. (1) curcumin, (2) desmethoxycurcumin, (3) bisdesmethoxycurcumin, (4) Ar-turmerone.
The roots of *Hydrastis canadensis* (goldenseal) are popular phyto-medicines for the treatment of gastrointestinal disorders and upper respiratory tract infections [1–2]. Simple and fast UPLC-UV-MS methods were developed for the quantification of the major constituents, berberine and hydrastine from roots of *Hydrastis canadensis* L. and dietary supplements containing goldenseal and *Echinacea purpurea* goldenseal combination formulations. The extraction (with acidified water and methanol) and analysis were applied to several other alkaloids including canadine, hydrastinine, palmatine, cotisine, and jatrorrhizine by a UPLC method with DAD and MS, C18 column. The mobile phase consisted of solvent A (50 mM ammonium formate, pH 3.3) and solvent B (acetonitrile with 0.05% formic acid). The developed method was validated for all the parameters tested and successfully applied to the identification of seven alkaloids in plant sample and ten dietary supplements. The plant material and ten dietary supplements were found to contain major alkaloids, hydrastine and berberine. One commercial product also contained palmatine, cotisine and jatrorrhizine, thus indicating that the material was not pure goldenseal. LC-mass spectrometry coupled with electrospray ionization (ESI) method is described for the identification of seven alkaloids in plant sample and dietary supplements. This method involved the use of the [M]+ ions for cotisine, jatrorrhizine, palmatine and berberine, [M+H]+ ions for hydrastine and canadine, [M+H+18]+ ions for hydrastinine in the positive ion mode with selective ion recording (SIR).

Fig. 1 UPLC Chromatograms of a mixture of standards (A), roots of goldenseal (B) and dietary supplements (C–D) at 290 nm. 1 hydrastine, 2 hydrastine, 3 cotisine, 4 jatrorrhizine, 5 canadine, 6 palmatine and 7 berberine.

417.12 were well resolved chromatographically (\(t_r = 17.83 \) and 20.18 min). These were characterized by losses of 120 and 162 amu upon fragmentation, respectively. The loss of 120 amu is characteristic of C-glycoside flavonoids. Acknowledgements: This research is funded in part by “Science Based Authentication of Dietary Supplements” Funded by the Food and Drug Administration grant number 2 U01 FD 002071-07. The authors would like to thank Annette Ford, University of Mississippi for extraction of samples. References: [1] Prasain JK, et al. (2007), Phytochem. Analysis, 18: 50–59. [2] Lukas SE, et al. (2005), Alcohol Clin Exp Res, 29(5): 756–762.

P-72 Quantitative Determination of Lovastatin from Dietary Supplements Containing Red Yeast Rice Extracts by using HPLC-UV-MS and UPLC-UV-MS Methods

Avula B1, Wang YH1, Smillie TJ1, Khan IA1,2
1National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, 2Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA

Red yeast rice is produced by cultivating Monascus purpureus on polished rice. China is the world’s largest producer of red yeast rice. Red yeast rice may provide benefits beyond those provided by stat-
Researchers have reported that the benefits seem to exceed those reported with lovastatin alone [1]. Statins are a class of drugs commonly prescribed to decrease cholesterol levels and have recently been shown to also stimulate bone formation. The HPLC and UPLC methods were developed for the quantitative determination of lovastatin in red yeast rice extracts and dietary supplements that claim to contain red yeast rice. The separation was achieved by using C-18 column material, a water/acetonitrile mobile phase, both containing acid gradient system and a temperature of 35°C. The method was validated for linearity, repeatability, limits of detection (LOD) and limits of quantification (LOQ). The LOD and LOQ of lovastatin were found to be 10 & 50 ng/mL by UPLC-UV method and 100 & 250 ng/mL by HPLC-UV method, respectively. The wavelength used for quantification with the diode array detector was 238 nm. The analysis of commercial products showed considerable variation of 0.37–5.65 µg ofLovastatin/g of red yeast extract. LC-mass spectrometry coupled with electrospray ionization (ESI) interface method is described for the identification ofLovastatin in red yeast rice samples. This method involved the use of [M+H]+ ions (m/z = 405.2641) in the positive ion mode with extractive ion monitoring (EIM).

Acknowledgements: This research is funded in part by "Science Based Authentication of Dietary Supplements" Funded by the Food and Drug Administration grant number 2 U01 FD 002071-07. References: [1] Lu Z, et al. (2008), Am J Cardiol, 101(12): 1689–1693.

Fig. 1 UPLC-UV and HPLC-UV chromatograms ofLovastatin, red yeast rice extract and dietary supplements (P-1 to P-3) at 238 nm.

P-73 Quantitative Determination of Chemical Constituents from Seeds of Nigella sativa L. by using HPLC-UV and Identification by LC-ESI-TOF

Avula B1, Wang YH1, Ali Z1, Smillie TJ2, Khan IA1,2

1 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, 2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA

Nigella sativa Linn. belongs to the Ranunculaceae family and is an indigenous herbaceous plant that is more commonly known as the fennel flower plant. The plant is also known as black cumin (English) and black-caraway (USA). The spicy seeds from this plant have medicinal usage dating back to the ancient Egyptians, Greeks and Romans. In Egypt and the Middle East the black seed oil is popularly used for certain cases of chronic cough and bronchial asthma [1,2]. An HPLC method was developed for the simultaneous determination of nine compounds of Nigella sativa L. The separation was achieved within 23 minutes by using C-18 column material, a water/acetonitrile mobile phase, both containing 0.1% acetic acid gradient system and a temperature of 35°C. The method was validated for linearity, repeatability, limits of detection (LOD) and limits of quantification (LOQ). The LOD and LOQ of nine compounds were found to be in the range from 0.09–10 µg/mL and 0.3–25 µg/mL, respectively. The wavelength used for quantification with the diode array detector was 205 and 260 nm. The seeds of N. sativa and commercial products showed the presence of all nine compounds. LC-mass spectrometry coupled with electrospray ionization (ESI) interface method is described for the identification of compounds in Nigella sativa L samples. This method involved the use of [M+H]+ and [M+Na]+ ions in the positive ion mode with extractive ion monitoring (EIM).

Acknowledgements: This research is funded in part by “Science Based Authentication of Dietary Supplements” Funded by the Food and Drug Administration grant number 2 U01 FD 002071-07.
Characterization and Screening of Cycloartane and Flavonoid Glycosides from Stem-Leaves of *Sutherlandia frutescens* by Using HPLC-UV-ESI-MS and MS-MS Fingerprint Analysis

Avula B1, Wang YH1, Smillie TJ1, Fu X1, Li XC1, Mabuesa W1, Syce J1, Johnson Q3, Folk W4, Khan IA1,2

1 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, MS 38677, USA
2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA
3 University of the Western Cape, Bellville, South Africa 7535
4 University of Missouri-Columbia, Columbia, MO 65211-7020

Sutherlandia frutescens (L.) R. BR. (Family Fabaceae) is a widely used medicinal plant from South Africa. It is traditionally used for stomach problems, internal cancers, diabetes, inflammatory conditions and recently to improve the overall health in cancer and HIV/AIDS patients [1,2]. LC-ESI-MS-TOF and ESI-MS-MS analysis were performed on cycloartane and flavonoid glycosides employing two mass spectrometers equipped with ion-trap and TOF analyzers. The data illustrates the ability of the ESI techniques in the identification of cycloartane and flavonoid glycosides, including the nature of parent compound, the number of sugar residues and the type of saccharide moiety. The preliminary analytical results showed that numerous compounds have not been investigated yet. Additionally, screening and structural characterization offered more information about the glycosyl and aglycone moieties.

Fig. 1 HPLC chromatograms of standard mix, plant sample and dietary supplement at 260 nm (1) magnoflorine, (2) Kaempferol-3-Oβ-glucopyranosyl (1→2)-O-β-galactopyranosyl (1→2)-O-glucopyranoside, (3) sieboldianoside A, (4) tauroside H2, (5) tauroside G3, (6) decaisoside D, (7) sapindoside B, (8) thymoquinone, (9) tauroside E.

Fig. 1 TIC of cycloartane and flavonoid glycosides from stem-leaves of *Sutherlandia frutescens* by using HPLC-ESI-MS-TOF.
Quantitative Determination of Cycloartane and Flavonoid Glycosides from *Sutherlandia frutescens* by UPLC-UV, UPLC-ELSD Methods and Confirmation by UPLC-MS

Avula B1, Wang YH1, Smillie TJ1, Fu X1, Li XC1, Mabusela W3, Syce J1, Johnson Q3, Folk W1, Khan IA1,2

1 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, MS 38677, USA
2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA
3 University of the Western Cape, Bellville, South Africa 7535.
4 University of Missouri-Columbia, Columbia, MO 65211-7020

Sutherlandia frutescens (L.) R. BR., Family Fabaceae, is a well-known and widely used medicinal plant from the Western Cape, South Africa [1,2]. Traditionally it has been used as a remedy for stomach problems, internal cancers, diabetes and various inflammatory conditions. Recently, it has been used for the management of HIV/AIDS in patients [1]. This paper describes the analytical method suitable for the determination of four flavonoid glycosides (*Sutherlandin A, B, C, D*) and four cycloartane glycosides (*Sutherlandioside A, B, C, D*) from stem-leaves of *Sutherlandia frutescens* (L.) R. BR. A separation by UPLC was achieved by using Acquity shield RP18 column, PDA with ELS detection, and a water/acetonitrile gradient as the mobile phase. The major cycloartane glycoside compound (*sutherlandioside B*) was detected at a concentration as low as 1.0 µg/mL. The analysis of plant material and products showed considerable variation of 0.6–2.7% for the major compound. This method involved the use of the [M+H]+ and [M+Na]+ ions in the positive ion mode with extractive ion monitoring (EIM). The eight compounds were further confirmed by UPLC-MS method in plant sample and products. In the positive ion mode, the protonated species [M+H]+ at *m/z* 741.2, 741.2, 725.2, 725.2, 653.4, 651.4, 635.4 and sodiated species [M+Na]+ at *m/z* 763.2, 763.2, 747.2, 747.2,

Fig. 1 UPLC chromatograms of a mixture of standard [Sutherlandin A (1), Sutherlandin B (2), Sutherlandin C (3), Sutherlandin D (4), Sutherlandioside B (5), Sutherlandioside C (6), Sutherlandioside D (7), Sutherlandioside A (8)] (A, C), leaves of *Sutherlandia frutescens* (B, D) by ELSD and UV detection at 260 nm.

Fig. 2 MS spectrum of Sutherlandioside B (peak 31 in Fig. 1). Inset is the structure and its MS fragment pathway.
Turnera diffusa Willd (Turneraceae), common name damiana, is an aromatic shrub with small yellow flowers. The leaves and sometimes the stems of damiana have medicinal uses. Evaluation of herbal dietary supplements marketed on the internet for recreational use shows that 10% of the most common products were claiming to contain damiana in the product ingredients [1,2]. An HPLC/UV method permitting the simultaneous determination of 8 compounds isolated from T. diffusa has been developed. A separation was achieved within 45 minutes by using the C-18 material column. The mobile phase was comprised of acetonitrile/methanol (90:10, v/v) containing 0.1% acetic acid and 50 mM ammonium acetate (pH = 4.2) at a flow rate of 1 mL/min and the column temperature was maintained at 30 °C. The method was validated for linearity, repeatability, limits of detection (LOD) and limits of quantification (LOQ). The developed method was applied for the quantitative determination of eight compounds [1].

Fucosterol is a characteristic carotenoid of brown sea wees, such as Undaria pinnatifida, Hiyikia fusiformis, and Sargassum fulvum. It has a unique structure including an allenic bond and 5,6-methylene-epoxide in the molecule. Fucosterol shows anti-obesity, anti-carcinogenic, anti-inflammatory and radical scavenging effects [1]. HPLC and UPLC methods have been developed for the quantitative determination of fucosterol in extracts and dietary supplements. The separation was achieved by using C-18 column material in both HPLC and UPLC method using a water/acetonitrile mobile phase. For the HPLC method, both solvents contain 0.1% acetic acid and in the UPLC method, both solvents contain 0.05% formic acid. The column temperatures were maintained at room temperature and 35 °C for HPLC and UPLC methods, respectively. The methods were validated for linearity, repeatability, limits of detection (LOD) and limits of quantification (LOQ). The LOD and LOQ of fucosterol was found to be 50 & 150 ng/mL, 10 & 35 ng/mL and 1 & 3 ng/mL, respectively. The wavelength used for quantification with the diode array detector was 449 nm and m/z 659.4 [M+H]+. LC-mass spectrometry coupled with electrospray ionization (ESI) interface method is described for the identification of compounds in extracts containing fucosterol and dietary supplements. This method involved the use of [M+H]+ ions in the positive ion mode with single ion recording (SIR).

Acknowledgements: This research is funded in part by “Science Based Authentication of Dietary Supplements” funded by the Food and Drug Administration grant number 2 U01 FD 002071-07. The authors would like to thank Annette Ford, University of Mississippi for extraction of samples. References: [1] Hayato M, et al. (2007), Journal of Oleo Science, 56: 615–621.

Quantitative Determination of Fucosterol from Brown Algae Extracts and Dietary Supplements by Using HPLC-UV and UPLC-MS Methods

Wang YH, Avula B, Smillie TJ, Khan IA

1. National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, MS 38677, USA
2. National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA

Fucosterol is a characteristic carotenoid of brown sea wees, such as Undaria pinnatifida, Hiyikia fusiformis, and Sargassum fulvum. It has a unique structure including an allenic bond and 5,6-methylene-epoxide in the molecule. Fucosterol shows anti-obesity, anti-carcinogenic, anti-inflammatory and radical scavenging effects [1]. HPLC and UPLC methods have been developed for the quantitative determination of fucosterol in extracts and dietary supplements. The separation was achieved by using C-18 column material in both HPLC and UPLC method using a water/acetonitrile mobile phase. For the HPLC method, both solvents contain 0.1% acetic acid and in the UPLC method, both solvents contain 0.05% formic acid. The column temperatures were maintained at room temperature and 35 °C for HPLC and UPLC methods, respectively. The methods were validated for linearity, repeatability, limits of detection (LOD) and limits of quantification (LOQ). The LOD and LOQ of fucosterol was found to be 50 & 150 ng/mL, 10 & 35 ng/mL and 1 & 3 ng/mL, respectively. The wavelength used for quantification with the diode array detector was 449 nm and m/z 659.4 [M+H]+. LC-mass spectrometry coupled with electrospray ionization (ESI) interface method is described for the identification of compounds in extracts containing fucosterol and dietary supplements. This method involved the use of [M+H]+ ions in the positive ion mode with single ion recording (SIR).

Acknowledgements: This research is funded in part by “Science Based Authentication of Dietary Supplements” funded by the Food and Drug Administration grant number 2 U01 FD 002071-07. The authors would like to thank Annette Ford, University of Mississippi for extraction of samples. References: [1] Hayato M, et al. (2007), Journal of Oleo Science, 56: 615–621.
ESI-MS as a Tool to Characterize Isoquinoline Alkaloids and Identify Possible Adulterant from Dietary Supplements that Claimed to Contain Goldenseal

Wang YH1, Avula B1, Smillie TJ1, Khan IA1,2
1 National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, 2 Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, MS 38677, USA

Hydrastis canadensis L., commonly known as goldenseal, is a perennial herb in the buttercup family Ranunculaceae, native to southeastern Canada and the northeastern US, and an economically important North American medicinal plant that has been subject to adulteration in commerce. The phytochemicals of interest in goldenseal are the isoquinoline alkaloids hydrastine, berberine, and canadine. Other compounds of interest are palmatine, coptisine and jatrorrhizine, alkaloids that are found in potential adulterant species but not in goldenseal [1–2]. Isoquinoline alkaloids β-hydrastine, hydrastinine, canadine, berberine, coptisine, jatrorrhizine and palmatine have been characterized by using electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) coupled with an ion-trap analyzer. Fragments $\text{C}_{11}\text{H}_{12}\text{NO}_2^+$ are dominant or major products ions in hydrastinine and β-hydrastine, respectively. The C-ring is relatively weak and likely broken in tetrahydrisoquinoline alkaloid canadine. In ESI source, the product ions of canadine are found at m/z 176 corresponding to fragments $\text{C}_{10}\text{H}_{10}\text{NO}_2^+$. This fragment bears the core skeleton of dominant ions in hydrastinine. However, for highly unsaturated isoquinoline alkaloids, its skeleton is relatively stable. In this sub-group, the major ions, such as presenting ions at m/z 308, 294 and 292 in palmatine, jatrorrhizine and beberine respectively, may involve the re-arrangement of D-ring. The results of the current study have classified the fragmentation pathway of each sub-group into isoquinoline alkaloids. It can be used to characterize the structures of trace isoquinoline alkaloids in dietary supplements that claimed to contain goldenseal, and will benefit to identify adulterant in dietary supplements.

Fig. 1 Fragmentation Pattern Proposed for M^+ Ions of Palmatine.
Heimia salicifolia (Lythraceae), also known as sun opener or shrub-by yellow crest, is a wild flowering shrub distributed from Mexico, southwestern Texas to northern Argentina. It has been used as antipyretic, emetic, laxative, diuretic and anti-inflammatory and for its wound healing activity in Central and South America. The folkloric reports claimed the plant had psychotomimetic activity [1]. Nine quinolizidine alkaloids and biphenyl quinolizidine lactone alkaloids isolated from H. salicifolia have been structurally characterized by using electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) coupled with an ion-trap analyzer. The fragmentation patterns of these alkaloids are dominated by the existence of bridge between C-2 and C-4, and less affected in accordance with structural variations of substitution at C-2 and C-12. When forming the lactone bridge between C-2 and C-4 over a biphenyl moiety, a neutral loss of 44 Da corresponding to carbon dioxide is easily generated. Moreover, the product ions will further yield fragment ions related to the cleavage of A-ring at C-1/C-2 and C-4/C-5. B ring bearing nitrogen atom has been found as one very easily loss group in the fragmentation pathways of all analyzed quinolizidine alkaloids. The results of this study can benefit the determination of trace quinolizidine alkaloids and biphenyl quinolizidine lactone alkaloids in crude plant extract and also provide background information to aid the structural investigations of related biological studies and forensic science. Acknowledgements: This research is funded in part by “Science Based Authentication of Dietary Supplements” Funded by the Food and Drug Administration grant number 2 U01 FD 002071-07. References: [1] Malone MH, et al. (1994), J Ethnopharm, 42: 135–159.

Lipids are important constituents of all living organisms. Galactolipids are a class of acylated membrane lipids with a sugar molecule attached to the third carbon of the glycerol molecule. These compounds are associated primarily with plastid membranes in seed plants [1]. The fruit of Lycium barbarum L. has been widely used in the health food industry because of its possible role in the prevention of chronic disease like age-related macular degeneration. In addition, it may possess antioxidant and antitumor activities, neuroprotective effect, and enhance immunity [2]. An SPE assisted HPLC/ELSD method has been developed for the quantitative determination of galactolipids from Lycium barbarum L. fruits. The separation of six galactolipids and one steroid were achieved by using C-18 column material in HPLC method coupled with an ELS detector. A water/acetonitrile mobile phase, both containing 0.1% acetic acid, was selected for the outlined method. The column temperature was maintained at 25 °C. The method was validated for logarithmic linearity, repeatability, limits of detection (LOD) and limits of quantification (LOQ). The LOD and LOQ of galactolipids were found to be in the range from 10–20 µg/mL and 20–50 µg/mL, respectively. The structures of six galactolipids and one steroid were further characterized by ESI-MS/MS method. Ion-trap tandem mass spectrometry coupled with electrospray ionization (ESI) interface method is described for the identification of compounds in L. barbarum. The developed HPLC-ELSD method has been successfully applied for determination of target analytes in different populations of same species. Acknowledgements: This research is funded in part by “Science Based Authentication of Dietary Supplements” Funded by the Food and Drug Administration grant number 2 U01 FD 002071-07. References: [1] Guella G, et al. (2003), Rapid Commun Mass Spectrom, 17: 1982–1994. [2] Inbaraj BS, et al. (2008) J Pharm Biomed Anal, 47: 812–818.

Fig. 1 Fragmentation pattern proposed for [M+H+] ions of vertine.
Isolation and Qualitative Characterization of Antidepressant Marsiline by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) from Marsilea quadrifolia L. Mondal AK1, Sarkar AK2, Pal TK2, Das N1, Mondal (Parui) S3

1 Department of Botany and Forestry, Plant Taxonomy, Biosystematics and Molecular Taxonomy Laboratory, Vidyasagar University, Midnapore-721 102, West Bengal, India
2 Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700 037, West Bengal, India
3 Department of Zoology, Lady Brabourne College, Kolkata-700 017, West Bengal, India

Anxiety, depression and mental health problems constitute the second most common chronic condition in clinical practice. Various types of herbal medicines are being used as anxiolytic drugs, which necessitates the development of newer and more effective antidepressants from traditional medicinal plants whose psychotherapeutic potential needs to be assessed in a variety of animal models [1, 2]. The main objective of this work was to develop a simple, sensitive, rapid and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous identification of Marsiline (Fig. 1), a major central nervous system active principal, that has been found to be responsible for sedative and anticonvulsant activity in Marsilea sp. (1, 2). The LC-MS/MS system (API 2000) with triple quadruple tandem mass spectrometer (AB Sciex Instruments, Foster, Canada) was used for qualitative determination of Marsiline from methanolic extract. The most active ingredient Marsiline was extracted by simple liquid-liquid extraction with organic solvent (benzene:n-hexane 1:1 v/v). The protonated analyte was

Fig. 1 HPLC-ELSD chromatograms of standards (A) and extracts of L. barbarum L. (B–C), and typical ESI-MS/MS spectra of analytes (D–F).
Acrylamide is a chemical intermediate used in a variety of laboratory and commercial products including soil-conditioning agents, dyes, pigments, and in the treatment of drinking water. Acrylamide also finds its way into the human diet when amino acids and sugars present in food are heated at high temperature during food processing. Earlier studies have demonstrated that chronic acrylamide treatment produced tumors in rats and mice; yet, the mechanism of acrylamide carcinogenicity remains unresolved. The aim of the present study was to investigate the biologic consequences of acrylamide exposure both in vitro and in vivo animal models. Animals were subjected to bone marrow micronucleus assays, chromosomal analysis, and flow cytometry analysis. Significant increases of chromosomal aberrations, in a dose dependent manner, were observed in human leukocyte culture and bone marrow cells of mice. There was also an increase in micronucleus frequency in bone marrow cells of mice. Flow cytometry analysis showed a reduced DNA content in liver cells of treated mice indicating acrylamide clastogenicity. Although acrylamide is a common laboratory reagent, its role as an environment contaminant will only be resolved with further investigations of its detrimental effects.

Candida glabrata is an opportunistic yeast pathogen of humans and accounts for approximately 4% of all catheter associated urinary tract infection. It is normally controlled by the body’s immune system and the body’s bacteria flora, but can cause serious mucosal and systemic infections. *C. glabrata* is a nicotinamide adenine dinucleotide (NAD⁺) auxotroph, which depends on the environmental supply of NAD⁺ precursors using nicotinamide riboside (NR), nicotinic acid (NA), and nicotinamide (NAM) as NAD⁺ precursors. These precursors are used in a functional Preiss-Handler pathway to produce NAD⁺. We focused on the location of enzymes used in the Preiss-Handler pathway of *C. glabrata* under conditions replete for NAD⁺ precursors and under extreme conditions such as NAD⁺ precursor starvation. The C-terminus of the Npt1, Qns1, Nrk1 and Pnc1 was tagged with GFP to identify the location of the enzymes in the yeast before and after starvation of NA and NR. Under the fluorescent microscope, localization of enzymes was found in the cytoplasm before and after starvation. Therefore, within the limits of our assay, we conclude that localization of the Preiss-Handler pathway enzymes in *C. glabrata* is unaffected by environmental conditions. We intend to confirm and extend these results by exploring the subcellular localization of pathway enzymes using different tags for localization.
It is widely accepted that recognition of exposed glycans on the cell surface of potential pathogens by host humoral or cell-associated lectins is a key component of the innate immune response of vertebrates and invertebrates. However, the protozoan parasite Perkinus marinus causes “Dermo” disease in the eastern oyster Crassostrea virginica, and is responsible for catastrophic damage to shellfisheries in North America. Until recently, the parasite’s mechanism(s) for entry into the hemocyte had remained obscure. The recent results suggest identification and characterization in oyster hemocytes a galectin (CvGal) with a unique carbohydrate-recognition domain (CRD) organization that, unlike most mammalian galectins, recognizes exogenous carbohydrate ligands [1]. CvGal binds to a variety of potential microbial pathogens, phytoplankton components, and Perkinus trophozoites, suggesting that it functions as a hemocyte surface receptor for this parasite, and facilitates its entry into the host cells. Unlike all galectins known so far, CvGal displays four CRDs that contain seven of the nine amino acid residues that bind ligand in the bovine galectin-1. Because the CvGal CRDs are similar, but not identical to each other, their carbohydrate specificities may be also different. To characterize their carbohydrate specificities, we initiated the recombinant expression of the CvGal CRDs, individually and as combinations of 2 and 3 CRDs to enable the rigorous analysis of their binding specificity and affinity. We predicted that teratogenic effects of BC are due to over expression of GATA2 gene that can induce the expression of endothelin-1 mRNA in the cerebral microvessels and peripheral vessels, and thus cause dysfunction of cerebrovascular and cardiovascular system of Japanese Medaka during development.
with antiaclaving property as well as non-toxic to fetus is required for the treatment of Fetal Alcohol Spectrum Disorder (FASD), a neurobehavioral disorder observed in the babies of alcoholic mothers who consumed alcohol during pregnancy. We have evaluated the potency of Radix puerariae (RP), the root extracts of a wild leguminous creeper kudzu (Pueraria montana), as an alternative natural medicine to prevent FASD using Japanese medaka (Oryzias latipes) embryo-larval development as the model. Previously, we have observed that ethanol was able to induce skeletal dysmorphogenesis in medaka by reducing skeletal growth in a dose-dependent manner [2]. In this experiment we have used RP and puerarin (Sigma-Aldrich) as preventive agents of ethanol-induced skeletal dysmorphogenesis. Medaka RP was collected from the Lafayette County of Oxford and HPLC analysis indicated that puerarin is the major isoflavone present in the methanolic extract of RP. Fertilized medaka eggs in standard laboratory conditions (16 L: 8D, 25 °C) were exposed to RP extract (0–1.5 mg/mL) for 6 day post fertilization (dpf) and then maintained in 48 well tissue culture plate in hatching solution (one embryo/ml/well). Embryo mortality was observed on 10 dpf. In separate experiments embryos were exposed to RP (0–0.5 mg/mL), Puerarin (0.25–1 mM) with or without ethanol (300 mM) for 2 dpf and then transferred to hatching solution. The calculated IC50 of RP as determined on 10 dpf is 785.3 ± 2.66 µg/ml (n = 5). Hatched embryos on 10 dpf were used for morphometric analysis of skeletal features including the cranial, jaw, ethmoid and hypophysal plate. It was observed that ethanol was able to reduce the growth of all these skeletal features; however, RP or puerarin alone has no effect. When the embryos were treated together with ethanol and RP or puerarin, ethanol-induced skeletal growth reductions were attenuated specifically by puerarin. It is therefore concluded that puerarin, the major flavonoid present in RP, has the potency to prevent ethanol-induced teratogenesis during development and can be used as an alternative natural medicine for the prevention of FASD or other alcohol related disorders. Acknowledgements: This work is supported in part by the United States Department of Agriculture, Agricultural Research Service Specific Cooperative Agreement No 58-6408-2-0009, National Center for Research Resources. This work was supported by Grant Number P20RR021929 from the National Center for Research Resources (NIH/NCRR).

Blue cohosh, Caullphyllum thalictroides is a popular herb that is extensively used for women’s health. Alkaloids and saponins are considered to be responsible for its pharmacological effects. In this study the effects of methanolic extract of the roots of blue cohosh, alkaloidal fraction and isolated constituents on major drug metabolizing cytochrome P450 (CYP450) enzymes were evaluated. Methanolic extract did not show any effect but the alkaloidal fraction showed a strong inhibition of CYP 2C19, 3A4, 2D6, and 1A2 (>80% inhibition at 100 µg/ml) with IC50 values in the range of 2–20 µg/mL. Among the constituents, caullphyllumine B (a piperidine type alkaloid), O-acetylbaptilin, anagyrine, and lupanine (lysine derived alkaloids) inhibited these enzymes to various extents (IC50 alkaloid), O-acetlybaptifolin, anagyrine, and lupanine (lysine de-

The current study evaluates the preformulation characteristics of THC-Serine, a novel produg of the poorly water soluble compound Delta-9-Tetrahydrocannabinol (THC). Aqueous solubility and stability and solubility in different surfactants and 2-hydroxypropyl–β-cyclodextrin (HPβCD) were studied. The LogP and pKa were calculated using computer modeling. Chemical, thermal and enzymatic stability of the prodrug was assessed at different pH (25 °C), elevated temperature (120 °C) and in human saliva, respectively. THC-Serine demonstrated pH dependent solubility. Highest solubility was observed at pH 2.0 (92-fold greater than THC). Solubility of the prodrug in Tween® 80 was 320-fold higher (256.65 ± 20.52 µg/ ml) than THC. With increasing concentrations of HPβCD solubility of THC-Serine was also observed to increase. Log P and pKa of THC-Serine were 3.18 and 7.05, respectively. Prodrug was most stable at pH 2.0, with a degradation rate constant of 3.17 × 10−3 h−1. Almost 80% of the prodrug remained intact after heating at 120 °C for 8 minutes. The degradation rate constant in saliva was found to be 11.52 × 10−3 h−1. The above results indicate that THC-Serine is a lead candidate for transmucosal THC delivery and warrants further investigation. Acknowledgements: This work was supported by Grant Number P20RR021929 from the National Center for Research Resources (NIH/NCRR).
plex, across porcine buccal mucosa, was studied at 37 °C, using side-by-side diffusion cells. The degradation rate was higher in open vials as compared to closed vials. The permeability of THC-HS/RAMEB (1:2) freeze-dried complex was increased four-fold and that of the 1:10 complex increased two-fold compared to the permeability of the THC-HS alone. The inclusion complex of THC-HS/RAMEB significantly enhances the thermal stability and permeation properties of THC-HS.

We previously reported that the majority of in vitro monocyte/macrophage activation exhibited by extracts of *Echinacea* and other botanicals depends on bacterial lipopolysaccharides and Braun type bacterial lipopoliproteins [1]. We determined the contribution made by these bacterial components to the overall immune enhancing activity detected in *E. purpurea* and *E. angustifolia* from bulk root and aerial material obtained from six major growers/suppliers in North America. Substantial variation in activity (up to 200-fold) was observed in extracts of these materials when tested in two monocyte/macrophage cell lines. The majority of activity was negated by treatment with agents that target bacterial lipopoliproteins (lipoprotein lipase) and lipopolysaccharides (polymyxin B). Experiments comparing the activity of freeze dried, freshly harvested *Echinacea* plants with those harvested and dried using various commercially relevant conditions, suggest that post-harvesting procedures do not substantially contribute to the variation observed in the commercial material. Acknowledgements: This research was partially funded by grants from the National Institutes of Health R01 AT002360 (NCAAM) to DSP and the USDA, Agricultural Research Service Specific Cooperative Agreement No.58–6408–7–012. References: [1] Pugh ND, et al. (2008), Int Immunopharmacology, 8: 1023–1032.

Fig. 1 Effect of temperature on stability of THC-HS: RAMEB complex.

Fig. 2 Effect of RAMEB on permeability of THC-HS.

P-93

Enhancement of Natural Killer Cell Activity and Phagocytosis in Healthy Subjects by Immulina, a *Spirulina* Extract Enriched for Braun Type Lipopoliproteins

Balachandran P1,2, Pugh ND1,2, Tamta H1,2, Sufka K1,4,5, Wu XM1, Pasco DS1,2,3

1 National Center for Natural Products Research, 2 Department of Pharmacognosy, 3 Research Institute of Pharmaceutical Sciences, School of Pharmacy, 4 Department of Psychology, 5 Department of Physiology, The University of Mississippi, University, MS 38677-1848, USA

Immulina is a commercial extract of *Spirulina* (*Arthospiza*) platensis that is standardized by biological activity. We previously reported that this extract is a potent activator of THP-1 monocytes in vitro and that oral consumption enhanced several immunological functions in mice [1]. In this study we further characterized Immulina by determining that Braun type lipopoliproteins are responsible for a major portion of the in vitro monocyte activation exhibited by this material. In order to understand the effect of Immulina on the human immune system, a pilot study was conducted on ten healthy individuals who supplemented their diet with Immulina (400 mg/day) for seven days. Blood was drawn from the participating individuals at three time points: before and after seven days of Immulina supplementation. Changes in mononuclear and polymorphonuclear phagocytosis were determined in heparinized whole blood as well as the cytotoxicity exhibited by natural killer (NK) and lymphokine activated killer cells. We observed statistically significant increases both in tumor cell killing by NK cells (p = 0.0019) and in phagocytosis by blood mononuclear cells (p = 0.0124) after Immulina supplementation. Acknowledgements: This research was partly funded by a USDA, Agricultural Research Service Specific Cooperative Agreement No. 58–6408–012. Immulina capsules were supplied by Scandinavian Clinical Nutrition Denmark A/S, Greve, Denmark. References: [1] Balachandran P, et al. (2006), International Immunopharmacology, 6: 1808–1814.

P-94

Can Green Tea Extract Become a Cause of Acute Pancreatitis?

Hammad M1, Haron M1, Madgula L1, Ashfaq MK1, Walker LA1

1 National Center for Natural Product Research, School of Pharmacy, University of Mississippi, University, MS 38677

Acute pancreatitis is a local inflammatory process that could occur due to multiple causes. This condition is diagnosed by elevated plasma amylase. In mice there is only one predominant model of acute pancreatitis, in which hyper-stimulatory doses of cholecystokinin or its analog caerulein are administered [1]. Nothing is known about herbs and botanicals for their potential to cause acute pancreatitis. We report a suspected potential of green tea extract to cause acute pancreatitis in mice. Balb/C mice 20–25 g was administered by oral gavage 200 uL of commercially available green tea extract. After 18 hours blood samples were taken and were analyzed for plasma chemistry profile and complete blood picture. Mice that were given green tea extract showed elevated plasma amylase (mean = 1428 ± 546.27 U/L) whereas in the normal mice the mean was 58.0 ± 0.4 U/L. In addition, slight elevation of plasma Alanine Aminotransferase (ALT) was observed (mean 127 ± 79.45 U/L) com-

Planta Med 2009; 75: 399–457

Georg Thieme Verlag KG Stuttgart · New York · ISSN 0032-0943
pared to normal controls (30 U/L). The Blood Urea Nitrogen (BUN) values were also raised (81 ± 51.0 mg/dl) compared to normal control (21 U/L). Green tea administered mice showed hyperactivity or restlessness compared to normal controls. The blood picture showed slight elevation of granulocytes (ranging from 26.8 to 83.2% Mean54%) as compared to normal that range between 8 to 48%. Plasma amylase elevation is a good indicator of acute pancreatitis. An increase in BUN and BUN:CRE ratio is one of the manifestations of dehydration. In our study, plasma amylase was remarkably increased in mice administered green tea. The caffeine in the green tea extract may have caused dehydration due to increased urination hence increasing BUN and BUN:CRE ratio. We conclude that green tea extract in the doses administered in this study could lead to acute pancreatitis. Further studies are needed to confirm these results along with histopathology of treated pancreas. References: [1] Lampel M, Kern HF, (1977), Virchows Arch A Pathol Anat Histol, 373(2): 97–117.

P-95

Alicin Bioavailability from Allinase-Inhibited Garlic

Lawson LD

1 Siliker, Inc., Utah Laboratory, 95 S. Mountain Way Drive, Orem, Utah 84058, USA

Allyl thiosulfinates (75% alicin) are responsible for most of the known health benefits of crushed raw garlic. Absent in garlic cloves, they are rapidly produced from allin when endogenous allinase is activated by crushing the cloves. The allinase-dependent production of allyl thiosulfinates (hereafter called alicin) is known to be completely inhibited by heat and acid (pH ≤ 3.5) in vitro, bringing into question any allin-related health benefits of cooked garlic or garlic powder supplements not protected from gastric acid. Indeed, most supplement brands have been shown to produce little alicin under USP/NF-defined simulated gastrointestinal conditions. To determine if alicin production in the human body might be different from in vitro predictions, a method for measuring alicin bioavailability was developed (break AUC of its main metabolite, allyl sulfide) and applied to heat-inactivated and acid-inactivated garlic. Alicin bioavailability from the allin of boiled garlic was found to be 18% (14–25%), much higher than expected, with a similar result for garlic powder suspended in 1 N HCl (pH 0.6). When garlic powder was consumed in capsules with a low protein meal (expected gastric pH > 3), 34% of the alicin was converted to alicin, indicating that the local pH is increased by the dissolving capsule. When pure allin was consumed, only 4% of it was converted to alicin, probably by intestinal bacteria. The substantial difference in alicin bioavailability between heat- or acid-inactivated garlic (18%) and pure allin (4%) indicates that the body has the ability to partially reactivate inactive allinase. This work has important implications: (1) the health benefits of raw garlic can be obtained with cooked garlic, if consumed in larger amounts, as is often the case, and (2) alicin bioavailability from garlic powder supplements may be considerably higher than predicted in vitro, depending on how they are made and consumed.

P-96

Anti-Biofilm Activity of Marrubium vulgare L. (Lamiaceae) Extract on MRSA

Quave CL

1 University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, 4301 W Markham St., Mail Slot 511, Little Rock, AR 72205-7199, USA

Many plants possess potent antimicrobial agents and provide effective remedies for skin conditions. Infusions of the aerial parts of Marrubium vulgare (white horehound) are used in the south Italian pharmacopoeia as a rinse for skin rashes and wounds [1]. Staphylococcus aureus, a common cause of skin infections, has generated increasing concern among healthcare professionals due to the prevalence of drug-resistant strains. Identification of novel antibiotics and anti-biofilm agents for methicillin-resistant S. aureus (MRSA) is important to healthcare on a global scale. The aim of this study was to evaluate extracts from Marrubium vulgare for in vitro inhibition of planktonic growth, biofilm formation and adherence in MRSA. A broth microtiter dilution method was employed to determine the MIC after 18 hours growth using an optical density (OD600 nm) reading using a MRSA isolate (ATCC 35953). The impact of extracts on biofilm formation and adherence was tested by growing biofilms for 40 hours, then fixing and staining with crystal violet. After washing, 10% Tween 80 was added and OD570 nm readings were taken. A crude ethanolic extract of the roots was the most effective at inhibiting both biofilm formation (IC50 = 32 µg/ml) and adherence (IC50 = 8 µg/ml). A significant dose-dependent response for the inhibition of both biofilm formation and adherence was evident. Acknowledgements: This work was funded by NIH/NCCAM F22AT005040 (PI: C.L. Quave). References: [1] Quave, C.L. et al. (2008). Ethnobiol. Ethnomed. Vol. 4: 5.

P-97

Antitumor Activity of Aralia racemosa

Clement JA, **Willis TJ**, **Kelly RM**, **McCoy JA**, **Schmitt JD**

1 Department of Chemistry and Physics, Western Carolina University, Cullowhee, NC, USA

The southern Appalachians are home to an extraordinary variety of plant species, many of which have been used medicinally by local populations. The vast majority of these species have not been studied for their antitumor activity, constituting a significant bio-exploitation opportunity. We have recently begun a targeted screening program for identifying plants indigenous to Western North Carolina with potential antitumor activity. Initial screening against the MCF-7 breast tumor cell line identified an extract of Aralia racemosa (aerial parts) as having cytotoxic activity. Combined CH2Cl2 extractions of the acidified crude organic extract showed dose-dependent toxicity towards MCF-7 cells, with IC50 around 100 µg/mL. Bioassay-guided fractionation by reverse phase C18 open column chromatography, followed by reverse phase C18 HPLC, afforded the major cytotoxic component, a twenty-carbon terpenoid, along with an inactive twenty-carbon compound. The major cytotoxic compound gives 73% inhibition growth of MCF-7 cells at 100 µg/mL. The structure has been characterized by NMR spectroscopy and ESI-MS, and these results will be presented. Acknowledgements: We thank the Western Carolina University SURF Program for summer support for T.J. W. We thank Wake Forest University Health Sciences Virus and Vector Core Laboratory for assay work.

P-98

Antitumor Activity of Arnoglossum atriplicifolium

Kelly RM, **Clement JA**, **Garrett SE**, **Kridell S**, **Schmitt JD**

1 Bent Creek Institute, Asheville, NC, USA

2 Department of Chemistry and Physics, Western Carolina University, Cullowhee, NC, USA

3 Wake Forest University Health Sciences, Winston-Salem, NC, USA

Western North Carolina is home to one of the most diverse collections of botanical species in the temperate world. The region is also an extensive repository of herbal natural healing knowledge, developed through the centuries by Native American and European settler practitioners, regional plant species with documented medicinal properties number in the hundreds. These factors combine to present urgent need for Western North Carolina to use cutting edge technology to identify, validate, protect, and use its matchless natural resources in innovative, sustainable, and productive ways including careful bioexploration. We have recently launched a targeted screening program for identifying plants indigenous to Western North Carolina with potential antitumor activity. Initial screening against the MCF-7 breast tumor cell line identified an extract of Arnoglossum atriplicifolium (whole plant) as having antitumor activity. Numerous lipophilic fractions exhibit dose-dependent toxicity towards MCF-7 and PC-3 cells, with IC50 values as low as 20 µg/mL. The results of bioassay-guided fractionation by reverse phase C18 open column chromatography followed by reverse phase C18 HPLC will be presented as will data demonstrating that many of the frac...
Biomarker Compounds in Muscadine and their Effects on Colon Cancer Cells

Muscadine (Vitis rotundifolia) is a native and valuable fruit crop in Southeastern US. Today muscadine products are commercially available as nutraceuticals. Major concerns in nutraceuticals are product quality and their effects on human health. This study was conducted to evaluate muscadine nutraceutical powder derived from pomace (cv. Noble) for biomarker compounds and their effects on colon cancer cell lines. The powder was extracted after acid hydrolysis. The extract (CE) was further fractionated to obtain flavonoid and anthocyanin fractions (FAF). Total phenolic (TP) and flavonoid (TF) contents, and individual biomarker compounds in each fraction were analyzed using colorimetric assays and HPLC-PDA, respectively. The TP and TF contents in the fractions were higher compared to those of CE. The main polyphenol present in CE was ellagic acid, not resveratrol as in table grapes. The major anthocyanins present were 3,5-diglucosidic anthocyanins in contrast to monoglucosidic anthocyanins present in table grapes. The effects of CE and FAF were tested in two colon cancer cell lines, HT-29 and HCT-15, for cytotoxicity and cell cycle arrest. Cell proliferation of CE and FAF were tested in two colon cancer cell lines, HT-29 and HCT-15, for cytotoxicity and cell cycle arrest. Cell proliferation assays and flow cytometry data showed that FAF decreased viable cell proliferation in both cell lines, and evidence of G1 arrest as compared to CE. These results indicate the bioactivity of fractions rich in flavonoids and anthocyanins may be higher than that of CE in inhibiting colon cancer cell growth.

Withania somnifera L. has been traditionally used as a sedative and hypnotic. Withania somnifera L. is reported to have anti-carcinogenic effects in animal and cell cultures by decreasing the expression of nuclear factor-kappaB, suppressing intercellular tumor necrosis factor, and potentiating apoptotic signalling in cancerous cell lines [1]. The present study was carried out on the purification, characterization and in vitro cytotoxicity of L-asparaginase from Withania somnifera L., a popular medicinal plant. L-asparaginase was purified from the crude extract of the fruits of Withania somnifera L. up to 95% through column chromatography. The purified L-asparaginase was characterized by size exclusion chromatography, PAGE and 2-D PAGE. The antitumor and growth inhibition effect of the L-asparaginase was assessed using MTT colorimetric dye reduction method. The purified enzyme is a homodimer, with a molecular mass of 72 ± 0.5 kDa, and pI value of the enzyme was around 5.1. It is the first report for plant L-asparaginase with antitumor activity. Data obtained from the MTT assay indicated that L-asparaginase significantly (P < 0.05) reduced the viability of lymphocytes in a dose-dependent manner, showing a LD50 value of 1.45 ± 0.05 IU/ml. Withania somnifera L. proved to be an effective and a novel source of L-asparaginase, furthermore it shows lot of similarity with bacterial L-asparaginase which has already been commercialized for the treatment of acute lymphoblastic leukemia.

Planta Med 2009; 75: 399–457
Georg Thieme Verlag KG Stuttgart · New York · ISSN 0032-0943
Evaluation of Ethanolic Extract of Withania somnifera on Haloperidol Induced Iron Deficiency Anemia in Albino Rats

Pawar RS1, Yadav SK1, Singhal AK1
1 Division of Pharmacognosy and Phytochemistry, Department of Pharmacological Sciences, Dr. H.S. Gour University, Sagar, (M.P.) 470003, India
2 VNS Institute of Pharmacy, Neelbad, Bhopal 462044 (M.P.), India

Medicinal plants are believed to be useful in strengthening the hematopoietic and immune system. Our objective was to investigate ethanolic extract of the root part of Withania somnifera (WS) on hematological parameters as well as serum iron and serum protein in iron deficiency anaemia induced using haloperidol and observe the morphological changes in red blood cells. The animals were divided into five groups. Group I acted as control, group II was haloperidol control (0.2 mg/kg body weight i.p.), group III was treated with ethanolic extract alone (200 mg/kg body weight i.p.), group IV and V were given HP and ethanolic extract at the doses of 100 and 200 mg/kg body weight i.p., respectively [1]. Effect of haloperidol on group II showed significant (P < 0.05) decrease in blood parameters, serum iron and serum protein, as compared to control animals group I. Comparison of group II with group III, IV and V exhibited significant (P < 0.05) increase in hematological parameters, serum iron and serum protein after four days and after recovery period study (on 19th day). This effect may be due to presence of iron in extract (947 µg in 50 ml.) estimated quantitatively by spectrophotometric method. Effect of ethanolic extract of Withania somnifera on morphology of blood cells was observed. It accelerated the oxygen carrying capacity of red blood cells and showed increased number of RBCs with normal counts and normocytic shape. We conclude that WS exhibited potent haematopoietic activity against haloperidol induced iron deficiency anaemia [2].

Anti-carcinoma Activity of Polyphenolic Extract of Ichnocarpus frutescens

Kumarapram CT1,2, Senthil S1, Thiagarajan M1, Balamuraigan M1, Radhakrishnan M1, Mandal SC2
1 Department of Pharmacology, The Erode College of Pharmacy, Erode, India 638112
2 Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India 700032

Dietary polyphenol antioxidants are known to decrease the risk of many diseases such as cancer and cardiovascular diseases [1]. In this study polyphenolic extract (PPE) of leaves of Ichnocarpus frutescens was evaluated for antitumor activity in vivo. Murine Ehrlich ascites carcinoma (EAC) model was used to assess PPE antitumor activity in vivo [2]. PPE cytotoxicity was determined in vitro in 937 monocyteid leukemia and K-562 erythroleukemia cell lines. The total phenolics content was quantified by the Folin–Cioclatelu method [3]. Results of in vivo study showed a significant decrease in tumor volume, viable tumor cell count and a significant increase of life span in the PPE treated group compared to untreated one: the life span of PPE treated animals increased by 53.41% (50 mg PPE/kg) and 73.95% (100 mg PPE/kg). PPE (5, 10 and 20 µg/mL) effectively inhibits in vitro proliferation of U-937 and K-562 cell lines. The in vitro and in vivo anti-tumor activity of PPE from Ichnocarpus frutescens could be due to rich polyphenols and flavonoids [4].

Neuropsycho-Cardiologic Risks Associated with Menopausal Women – Benefits of a Plant Based Formulation

Dube GP1, Rajamanickam GV1, Aruna Agrawal A1
1 Institute of Medical Sciences, Banaras Hindu University, Varanasi
2 Centre for Advanced Research in Indian System of Medicine, (CARISM) SASTRA University, Thanjavur
3 CARISM, SASTRA University, Thanjavur
4 CARISM, SASTRA University, Thanjavur
5 CARISM, SASTRA University, Thanjavur

The anatomic, physiologic alterations in the ovary that eventually result in diminished estrogen production begin several years before permanent cessation of menstruation among the women. The relationship between menopause and cardiovascular risk is established and it is well documented that estrogen depletion is responsible for cardiovascular risk. A double blind placebo controlled study was carried out with the object to minimize the neuropsycho-cardiologic risks associated with menopausal women by a...
Pharmacokinetic Interaction of Ginkgo Biloba with Carbamazepine

Harish Chandra R¹, Rajkumar M², Veeresham C³

¹ Department of Pharmacognosy, University College of Pharmaceutical Sciences, Kakatiya University, Warangal-506009, Andhra Pradesh, India
² Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India

Ginkgo biloba L. (Ginkgoaceae) usage has recently gained interest among herbalists and modern medical practitioners because of its unique pharmacological actions that are attributed to active substances such as flavonoids and terpenoids [1]. It is commonly prescribed for improvement of cerebral circulation, memory improvement, and antioxidant activity. Epileptics have a greater chance of oxidative stress and memory impairment. G. biloba can be used as an alternative remedy in specific conditions such as oxidative stress and memory impairment [2]. This study aims to evaluate the pharmacokinetic interaction between the aqueous extract of Ginkgo biloba and carbamazepine. Two groups of animals, each containing 6 animals were used. The Group 1 and Group 2 received pretreatment with two different doses of extract for 7 days and on day 8 the extract was co-administered with carbamazepine. The Group 3 (control) received carbamazepine alone on day 8. The blood samples were collected for 24 hours. Samples were analyzed by HPLC for total flavonoids and total terpenoids. The results indicate that Ginkgo biloba reduced the bioavailability and increased the rate of elimination of carbamazepine which confirms that there is significant herb-drug interaction between the two. References:

Leishmaniasis is a complex of disease syndromes, caused by protozoan parasites of the genus Leishmania [1]. The aim of this study was to evaluate antileishmanial activity, pharmacokinetics and tissue distribution studies of mannose grafted piperine lipid nanospheres (LN-P-MAN) in BALB/c mice. Lipid nanospheres of piperine (LN-P) and LN-P-MAN were prepared by homogenization followed by ultrasonication. Particle size and Zeta potential were determined using Malvern Zeta Sizer. Antileishmanial activity of piperine, LN-P and LN-P-MAN was assessed in BALB/c mice infected with Leishmania donovani AG83 for 60 days. A single dose (5 mg/kg) of piperine, LN-P and LN-P-MAN was injected intravenously. Mice were sacrificed after 15 days of treatment with piperine, LN-P, LN-P-MAN and Leishman Donovan Unit (LDU) is counted [2]. The size and Zeta potential were 196.0 ± 1.7 nm to 365 ± 4.7 nm and −35.6 ± 0.2 mV to −44.3 ± 0.8 mV, respectively. The entrapment efficiency and drug content were 99.36 ± 0.05 to 99.92 ± 0.04% and 0.98 ± 0.01 to 0.91 ± 0.04 mg/ml, respectively. The total plasma concentrations of LN-P and LN-P-MAN were approximately 3 to 3.5 folds higher than piperine. Piperine reduced 36% and 35%, LN-P reduced 63% and 52%, while LN-P-MAN reduced 94% and 89% of parasite burden in liver and spleen after 15 days of postinfection, respectively. Pharmacokinetics of piperine in lipid nanospheres showed a biexponential decline with significantly high AUC, lower rate of clearance and smaller volume of distribution in comparison with piperine. LN-P-MAN showed highly reduced parasite burden than piperine. References: [1] Boelaert M, et al. (2000), Trans R Soc Trop Med Hyg, 94: 465–471. [2] Stauber LA, et al. (1958), J Protozool, 5: 269–273.
Anticancer and Antimalarial Dihydroartemisinin Dimer Oximes

Gul W1,2, Galal A2, Slade D2, Khan SI2, ElSohly MA1,2,3
1 ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA
2 National Center for Natural Products Research, The University of Mississippi, University, MS 38677, USA
3 Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, USA

Acknowledgements: Part of the research was funded by “Botanical dietary supplements: Science-Base for Authentication” of US Food and Drug Administration Grant No FD-U-002 071. The authors would like to thank Missouri Botanical Garden, USA for authentic plant material and Vaishali Joshi for plant identification. Authors also thank Bharathi Avula for her kind help in acquiring the mass data. Y.J.S. is thankful to NCNPR for graduate research assistantship.

Pregnane Derivatives from Hoodia gordonii

Shukla YJ1, Pawar RS2, Khan IA1
1 Department of Pharmacognosy, University of Mississippi, University, MS, 38677
2 National Center for Natural Products Research (NCNPR), University of Mississippi, University, MS, 38677

Hoodia gordonii (Fam. Asclepiadaceae) is a succulent plant indigenous to South Africa, Botswana and Namibia. Hoodia has gained wide popularity as one of the most sought after dietary supplements for its appetite suppressant activity. P57AS3, the reported active constituent from H. gordonii, is claimed to induce increased ATP synthesis in the hypothalamic neurons, thereby reducing appetite by giving out false satiety signals to the appetite center. In our previous phytochemical studies, we had reported isolation of several oxypregnan glycosides and calogenin bidesmosides, including P57AS3. Here, we report isolation and characterization of nine pregnane glycosides, including two novel abeo-sterol aldehyde glycosides, (1), and, (2). This is a first report of abeo-sterols from Hoodia spp. The chemical structures of the glycosides were established by chemical degradation studies and extensive spectroscopic techniques that included one-dimensional and two-dimensional NMR.

Acknowledgements: Part of the research was funded by “Botanical dietary supplements: Science-Base for Authentication” of US Food and Drug Administration Grant No FD-U-002 071. The authors would like to thank Missouri Botanical Garden, USA for authentic plant material and Vaishali Joshi for plant identification. Authors also thank Bharathi Avula for her kind help in acquiring the mass data. Y.J.S. is thankful to NCNPR for graduate research assistantship.
Author's Index

A
- Adams M 401
- Agarwal A 423
- Ahmed R 448
- Akaydin G 415
- Al-Amier H 432, 432
- Ali N 454
- Alladin T 410
- Aruna Agrawal A 453
- Ashfaq MK 430, 450
- Avery MA 426
- Aytc Z 420

B
- Baek JP 432
- Balachandran P 450
- Balamurugan M 453
- Baser KHC 415, 416, 421, 421, 421, 422, 422
- Becnel JJ 421, 422, 422
- Bertoni B 419
- Bhut B 412
- Bolonhezi D 414
- Bin Xiao 405
- Brown PN 404
- Butun S 421

C
- Cao JQ 411
- Carakostas MC 409
- Chandra S 415, 416
- Chang Y 420
- Chan PW 408
- Chen JF 413, 417
- Chen KL 416
- Chen S 411
- Chen SL 404, 407, 416
- Chen WS 413, 417
- Choi HK 401
- Choi YH 401
- Clark AM 423
- Clement JA 451, 451
- Coates PM 435
- Cormack BP 447
- Craker LE 414, 432, 432, 432
- Cui JM 411
- Curry LC 409

D
- Das mahapatra AK 448, 448
- Das N 446
- Dayan FE 431
- Demirci B 415, 416, 421, 421, 421, 422, 422
- Demirci F 415, 416
- Dewedi RB 407
- Ding Y 424
- Doerksen RJ 431
- Donia AER 414
- Duali G 421
- Duan YB 413, 417
- Dubey GP 453
- Duman H 421
- Dutt HC 406
- Duzgoren-Aydin NS 436

E
- Effert H 408
- El-Hela AA 432
- Elsouly MA 414, 415, 415, 416, 426, 455, 449, 449
- Elujoba AA 420
- Engel J 435
- Erkelens T 417

F
- Fachin AL 419
- Ferreira D 424, 431, 432
- Fischer M 401
- Fisher KD 435
- Folk W 424, 441, 442
- Franca SC 419, 419
- Fronczek F 430
- Fu X 441, 442

G
- Galal A 455
- Gang DR 431
- Gangemi J 452
- Gao T 417
- Gao Z 422, 422
- Gao ZP 445
- Garrett SE 451
- Gbolade AA 420
- Grundel E 433
- Guan SH 407
- Gul W 449, 449, 455
- Guo J 412
- Gurbuz I 416
- Gutenleitner S 401

H
- Hadi C 402
- Hamann MT 431
- Han J 407
- Han JP 416
- Harish Chandra R 454
- Haron M 450
- Hegazi EA 447
- Helaly A 432
- Hetta M 432
- Hifnawy M 432
- Hussien H 410

J
- Jacob MR 423, 430
- Jadhav AN 412, 425
- Jiang BH 407
- Jia Q 434
- Johnson Q 424, 441, 442
- Joshi VC 414, 425, 430
- Jun Pill Baek JP 414

K
- Kang K 420
- Kang TG 420
- Kaushik D 452, 452
- Kaushik P 452
- Kaya M 421
- Kayser O 417
- Kelly RM 451, 451
- Khan SI 420, 430, 449, 455
- Kingston RL 410
- Kirker GT 422
- Klein M 435
- Koo HJ 431
- Koparal AT 421
- Kridell S 451
- Krogtad DJ 402
- Krynitsky A 433
- Kumar D 452, 452
- Kumar S 452
- Kumarapattan CT 453
- Kumarihamy M 431

L
- Lane H 452
- Lata H 414, 414, 415, 416
- Laurentzi A 431
- Lei Y 413
- Le Zhang L 413
- LeMaster S 410
- Lertora JU 402
- Lessard S 410
- Liang QL 405
- Liang ZS 423
- Lihua Tang LH 412
- Li MH 416
- Ling KH 408
- Li P 434, 434
- Liu X 407
- Liu Y 413, 417
- Liu YN 420
- Li XC 423, 424, 424, 424, 441, 442
- Li Z 405
- Lu AP 404
- Luo K 416
- Lv Z 420

M
- Mabusela W 424, 441, 442
- Ma C 407
- McCoy JA 419, 451
- McDowell E 431
- Madgula L 450
- Madkour SA 447
- Majumdar S 449, 449
- Mandal SC 453
- Manly SP 430
- Marles R 410
- Martinez-Ross NM 419
- Matallo MB 419
- Mazzola E 433
- Mehmedic Z 414
- Melek B 402
- Mikell JR 423
- Milligan G 434
- Moawad A 432
- Mondal (Parui) S 446
- Moraes RM 414, 419, 450
- Muhammad T 430
- Muhor C 433

N
- Nagabhushanam K 412
- Na Ham 405
- Naji MA 403
<table>
<thead>
<tr>
<th>Name</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanayakkara NPD</td>
<td>431</td>
</tr>
<tr>
<td>Narender R</td>
<td>452</td>
</tr>
<tr>
<td>Nguyen Pho A</td>
<td>435</td>
</tr>
<tr>
<td>Odde S</td>
<td>431</td>
</tr>
<tr>
<td>Ojha RP</td>
<td>453</td>
</tr>
<tr>
<td>O'May GA</td>
<td>447</td>
</tr>
<tr>
<td>Osman M</td>
<td>447</td>
</tr>
<tr>
<td>Oyedeji OA</td>
<td>420</td>
</tr>
<tr>
<td>Pal TK</td>
<td>446</td>
</tr>
<tr>
<td>Pang XH</td>
<td>417</td>
</tr>
<tr>
<td>Pan H</td>
<td>411</td>
</tr>
<tr>
<td>Pan Sj</td>
<td>447</td>
</tr>
<tr>
<td>Pan Z</td>
<td>415, 416</td>
</tr>
<tr>
<td>Park KW</td>
<td>432</td>
</tr>
<tr>
<td>Parmar PP</td>
<td>452</td>
</tr>
<tr>
<td>Pasco DS</td>
<td>414, 450, 450</td>
</tr>
<tr>
<td>Pawar RS</td>
<td>455</td>
</tr>
<tr>
<td>Pereira AMS</td>
<td>419, 419</td>
</tr>
<tr>
<td>Pereira PS</td>
<td>419</td>
</tr>
<tr>
<td>Phinney KW</td>
<td>435</td>
</tr>
<tr>
<td>Pimentel FA</td>
<td>419</td>
</tr>
<tr>
<td>Pounders C</td>
<td>415</td>
</tr>
<tr>
<td>Pridgeon J</td>
<td>421, 422, 422</td>
</tr>
<tr>
<td>Pugh ND</td>
<td>414, 450, 450</td>
</tr>
<tr>
<td>Qi LW</td>
<td>412</td>
</tr>
<tr>
<td>Rader JI</td>
<td>433</td>
</tr>
<tr>
<td>Radhakrishnan M</td>
<td>453</td>
</tr>
<tr>
<td>Radwan MM</td>
<td>430</td>
</tr>
<tr>
<td>Rahman Z</td>
<td>449</td>
</tr>
<tr>
<td>Rajamanickam GV</td>
<td>453, 453</td>
</tr>
<tr>
<td>Rajkumar M</td>
<td>454</td>
</tr>
<tr>
<td>Rao AS</td>
<td>418, 418</td>
</tr>
<tr>
<td>Rastogi M</td>
<td>453</td>
</tr>
<tr>
<td>Ravishankar B</td>
<td>407</td>
</tr>
<tr>
<td>Repka MA</td>
<td>449, 449</td>
</tr>
<tr>
<td>Rimmer CA</td>
<td>435</td>
</tr>
<tr>
<td>Roberts A</td>
<td>409</td>
</tr>
<tr>
<td>Rollinger JM</td>
<td>402</td>
</tr>
<tr>
<td>Ross SA</td>
<td>430</td>
</tr>
<tr>
<td>Rouis M</td>
<td>403</td>
</tr>
<tr>
<td>Rumalla CS</td>
<td>425, 436, 445</td>
</tr>
<tr>
<td>Saldanha LG</td>
<td>435</td>
</tr>
<tr>
<td>Sampson Bj</td>
<td>421, 422, 422</td>
</tr>
<tr>
<td>Sander LC</td>
<td>435</td>
</tr>
<tr>
<td>Sarkar AK</td>
<td>446</td>
</tr>
<tr>
<td>Saunders JA</td>
<td>447</td>
</tr>
<tr>
<td>Schmitt JD</td>
<td>451</td>
</tr>
<tr>
<td>Schuhly W</td>
<td>401</td>
</tr>
<tr>
<td>Schweiger S</td>
<td>402</td>
</tr>
<tr>
<td>Senthil S</td>
<td>453</td>
</tr>
<tr>
<td>Sharpless KE</td>
<td>435</td>
</tr>
<tr>
<td>Shaw PC</td>
<td>408</td>
</tr>
<tr>
<td>Shields V</td>
<td>447</td>
</tr>
<tr>
<td>Shi LC</td>
<td>407, 416</td>
</tr>
<tr>
<td>Shitliff ME</td>
<td>447</td>
</tr>
<tr>
<td>Shode FO</td>
<td>420</td>
</tr>
<tr>
<td>Shukla VJ</td>
<td>436</td>
</tr>
<tr>
<td>Sieira VC</td>
<td>419</td>
</tr>
<tr>
<td>Simmet T</td>
<td>403</td>
</tr>
<tr>
<td>Singh AK</td>
<td>453</td>
</tr>
<tr>
<td>Singh J</td>
<td>452</td>
</tr>
<tr>
<td>Slade D</td>
<td>429, 455</td>
</tr>
<tr>
<td>Smeltzer M</td>
<td>451</td>
</tr>
<tr>
<td>Song JY</td>
<td>407, 416, 416</td>
</tr>
<tr>
<td>Sowers KR</td>
<td>433</td>
</tr>
<tr>
<td>Srivastava JS</td>
<td>412</td>
</tr>
<tr>
<td>Stanikunaite R</td>
<td>430</td>
</tr>
<tr>
<td>Subrahmanya Kumar K</td>
<td>404</td>
</tr>
<tr>
<td>Subramanian RB</td>
<td>452</td>
</tr>
<tr>
<td>Sufka KJ</td>
<td>450</td>
</tr>
<tr>
<td>Sumiyanto J</td>
<td>414, 414, 450</td>
</tr>
<tr>
<td>Sun C</td>
<td>407, 416</td>
</tr>
<tr>
<td>Sun LZ</td>
<td>426</td>
</tr>
<tr>
<td>Sun S</td>
<td>435</td>
</tr>
<tr>
<td>Syce J</td>
<td>424, 441, 442</td>
</tr>
<tr>
<td>Tabanac N</td>
<td>415, 416, 420, 422, 422, 422</td>
</tr>
<tr>
<td>Tamta H</td>
<td>414, 450, 450</td>
</tr>
<tr>
<td>Tang L</td>
<td>413</td>
</tr>
<tr>
<td>Tchen N</td>
<td>415</td>
</tr>
<tr>
<td>Tekwani BL</td>
<td>430</td>
</tr>
<tr>
<td>Thiagarajan M</td>
<td>453</td>
</tr>
<tr>
<td>Tian JK</td>
<td>412</td>
</tr>
<tr>
<td>Trappe JM</td>
<td>430</td>
</tr>
<tr>
<td>Turner JL</td>
<td>415</td>
</tr>
<tr>
<td>Vasta G</td>
<td>448</td>
</tr>
<tr>
<td>VobaLaboyna</td>
<td>454</td>
</tr>
<tr>
<td>Walker LA</td>
<td>419, 430, 449, 450</td>
</tr>
<tr>
<td>Wang EZ</td>
<td>403</td>
</tr>
<tr>
<td>Wang YH</td>
<td>418, 418, 425, 427, 436, 437, 438, 438, 439, 440, 441, 442</td>
</tr>
<tr>
<td>Wang YM</td>
<td>405</td>
</tr>
<tr>
<td>Wargovich M</td>
<td>452</td>
</tr>
<tr>
<td>Watts JEM</td>
<td>433</td>
</tr>
<tr>
<td>Weaver S</td>
<td>434</td>
</tr>
<tr>
<td>Wedge DE</td>
<td>415, 416, 420, 421, 422</td>
</tr>
<tr>
<td>Weerasooriya AD</td>
<td>421, 427, 427</td>
</tr>
<tr>
<td>Wendland T</td>
<td>448</td>
</tr>
<tr>
<td>Werle CT</td>
<td>421, 422, 422, 422</td>
</tr>
<tr>
<td>White KD</td>
<td>433</td>
</tr>
<tr>
<td>Willett KL</td>
<td>436</td>
</tr>
<tr>
<td>Willis TJ</td>
<td>451</td>
</tr>
<tr>
<td>Wise SA</td>
<td>435</td>
</tr>
<tr>
<td>Wu M</td>
<td>448</td>
</tr>
<tr>
<td>Wu XM</td>
<td>414, 450</td>
</tr>
<tr>
<td>Xiao Y</td>
<td>413, 417</td>
</tr>
<tr>
<td>Xie C</td>
<td>412</td>
</tr>
<tr>
<td>Xie CX</td>
<td>407, 420</td>
</tr>
<tr>
<td>Xie GB</td>
<td>413</td>
</tr>
<tr>
<td>Xu HK</td>
<td>407, 416</td>
</tr>
<tr>
<td>Xu L</td>
<td>420</td>
</tr>
<tr>
<td>Xu LZ</td>
<td>412</td>
</tr>
<tr>
<td>Xu WH</td>
<td>423</td>
</tr>
<tr>
<td>Xu QM</td>
<td>412</td>
</tr>
<tr>
<td>Yadav SK</td>
<td>453</td>
</tr>
<tr>
<td>Yang HH</td>
<td>405</td>
</tr>
<tr>
<td>Yang M</td>
<td>407</td>
</tr>
<tr>
<td>Yang SL</td>
<td>412</td>
</tr>
<tr>
<td>Yao H</td>
<td>407, 416, 416</td>
</tr>
<tr>
<td>Yi B</td>
<td>413, 417</td>
</tr>
<tr>
<td>Yue QX</td>
<td>407</td>
</tr>
<tr>
<td>Zhang L</td>
<td>417</td>
</tr>
<tr>
<td>Zhang WD</td>
<td>404</td>
</tr>
<tr>
<td>Zhang Y</td>
<td>411</td>
</tr>
<tr>
<td>Zheng J</td>
<td>413</td>
</tr>
<tr>
<td>Zhihui Liu</td>
<td>405</td>
</tr>
<tr>
<td>Zhou JL</td>
<td>412</td>
</tr>
<tr>
<td>Zhou SX</td>
<td>413</td>
</tr>
<tr>
<td>Zjawiony JK</td>
<td>431, 432</td>
</tr>
</tbody>
</table>