Synlett 2008(12): 1789-1792  
DOI: 10.1055/s-2008-1078549
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Oxidative Conjugate Hydrothiocyanation-Hydrosulfenylation of Baylis-Hillman Alcohols Promoted by a Protic Ionic Liquid

Lal Dhar Singh Yadav*, Rajesh Patel, Vishnu Prabhakar Srivastava
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India
Fax: +91(532)2460533; e-Mail: ldsyadav@hotmail.com;
Further Information

Publication History

Received 26 March 2008
Publication Date:
02 July 2008 (online)

Abstract

The first example of one-pot oxidative conjugate hydro­thiocyanation-hydrosulfenylation of acrylic ester derived Baylis-Hillman alcohols, that is, methyl 3-aryl-3-hydroxy-2-methylene­propanoate, is reported. The reaction involves protic ionic liquid [Hmim]HSO4-mediated oxidation of Baylis-Hillman alcohols with NaNO3 to give methyl (E)-α-formylcinnamates followed by conjugate addition of sulfur-centered nucleophiles (NH4SCN/PhSH) to afford the corresponding methyl β-thiocyanato (or β-phenylsulfenyl)-α-formylhydrocinnamates diastereoselectively in 74-87% yields in a one-pot procedure. After isolation of the product, the ionic liquid [Hmim]HSO4 could be easily recycled for further use without any loss of efficiency.

    References and Notes

  • 1a Baylis AB, and Hillman MED. inventors; Offenlegungsschrift  2155113.  1972; US 3,743,669, ; Chem. Abstr. 1972, 77, 34174
  • 1b Ciganek E. In Organic Reactions   Vol. 51:  Wiley; New York: 1997.  p.201 
  • 1c Ghosh AK. Bilcer G. Schiltz G. Synthesis  2001,  2203 
  • 2a Basavaiah D. Rao KV. Reddy RJ. Chem. Soc. Rev.  2007,  36:  1581 
  • 2b Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 2c Langer P. Angew. Chem. Int. Ed.  2000,  39:  3049 
  • 2d Basavaiah D. Rao PD. Tetrahedron  1996,  52:  8001 
  • 2e Drewes SE. Roos GHP. Tetrahedron  1988,  44:  4653 
  • 3a Yadav JS. Gupta MK. Pandey SK. Reddy BVS. Sarma AVS. Tetrahedron Lett.  2005,  46:  2761 
  • 3b Basavaiah D. Hyma RS. Muthukumaran K. Kumaragurubaran N. Synthesis  2000,  217 
  • 3c Roy O. Riahi A. Hénin F. Muzart J. Tetrahedron  2000,  56:  8133 
  • 3d Basavaiah D. Satyanarayana T. Tetrahedron Lett.  2002,  43:  4301 
  • 3e Kundu MK. Bhat SV. Synth. Commun.  1999,  29:  93 
  • 3f Basavaiah D. Bhavani AKD. Pandiaraju S. Sarma PKS. Synlett  1995,  243 
  • 4a Basavaiah D. Krishnamacharyulu M. Hyma RS. Sarma PKS. Kumaragurabaran N. J. Org. Chem.  1999,  64:  1197 
  • 4b Park DY. Gowarisankar S. Kim JN. Tetrahedron Lett.  2006,  47:  6641 
  • 4c Das B. Banerjee J. Chowdhury N. Majhi A. Mahender G. Helv. Chim. Acta  2006,  89:  876 
  • 4d Kim JN. Chung YM. Im YJ. Tetrahedron Lett.  2002,  43:  6209 
  • 4e Hbaïeb S. Latiri Z. Amri H. Synth. Commun.  1999,  29:  981 
  • 5a Liu Y. Xu X. Zheng H. Xu D. Xu Z. Zhang Y. Synlett  2006,  571 
  • 5b Srihari P. Singh AP. Jain R. Yadav JS. Synthesis  2006,  2772 
  • 5c Das B. Chowdhury N. Damodar K. Banerjee J. Chem. Pharm. Bull.  2007,  55:  1274 
  • 5d Kim JN. Kim JM. Lee KY. Synlett  2003,  821 
  • 5e Kim JN. Kim HS. Gong JH. Chung YM. Tetrahedron Lett.  2001,  42:  8341 
  • 6a Bhuniya D. Gujjary S. Sengupta S. Synth. Commun.  2006,  36:  151 
  • 6b Wang W. Yu M. Tetrahedron Lett.  2004,  45:  7141 
  • 6c Azizi N. Saidi MR. Tetrahedron Lett.  2002,  43:  4305 
  • 6d Kamimura A. Morita R. Matsuura K. Omata Y. Shirai M. Tetrahedron Lett.  2002,  43:  6189 
  • 7a Yadav JS. Reddy BVS. Singh AP. Basak AK. Synthesis  2008,  469 
  • 7b Yadav JS. Reddy BVS. Singh AP. Basak AK. Tetrahedron Lett.  2007,  48:  4169 
  • 8a Fluharty AL. In The Chemistry of the Thiol Group   Part 2:  Patai S. Wiley; New York: 1974.  p.589 
  • 8b Clark JH. Chem. Rev.  1980,  80:  429 
  • 8c Fujita E. Nagao YJ. Bioorg. Chem.  1977,  6:  287 
  • 8d Trost BM. Keeley DE. J. Org. Chem.  1975,  40:  2013 
  • 8e Shono T. Matsumura Y. Kashimura S. Hatanaka K. J. Am. Chem. Soc.  1979,  101:  4752 
  • 8f Nishimura K. Ono M. Nagaoka Y. Tomioka K. J. Am. Chem. Soc.  1997,  119:  12974 
  • 9 Patani GA. Chem. Rev.  1996,  96:  3147 
  • 10a Kelly TR. Kim MH. Curtis ADM. J. Org. Chem.  1993,  58:  5855 
  • 10b Leblanc BL. Jursic BC. Synth. Commun.  1998,  28:  3591 
  • 10c Toste FD. Laronde F. Still WJ. Tetrahedron Lett.  1995,  36:  2949 
  • 10d Metzer JB. In Comprehensive Heterocyclic Chemistry   Vol. 6:  Katritzky A. Pergamon; Oxford: 1984.  p.235 
  • 10e Newman AA. In Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives   Academic Press; New York: 1975. 
  • 11 Mehta RG. Liu J. Constantinou A. Thomas CF. Hawthorne M. You M. Gerhaeusers C. Pezzuto JM. Moon RC. Moriarty RM. Carcinogenesis  1995,  16:  399 
  • 12 Bakuzis P. Bakuzis MLF. J. Org. Chem.  1981,  46:  235 
  • 13a Chowdhury S. Mohan RS. Scott JL. Tetrahedron  2007,  63:  2363 
  • 13b Greaves TL. Drummond CJ. Chem. Rev.  2008,  108:  206 
  • 13c Bao W. Wang Z. Green Chem.  2006,  8:  1028 
  • 13d Zhao D. Wu M. Kou Y. Min E. Catal. Today  2002,  74:  157 
  • 13e Dupont J. de Souza RF. Suarez PAZ. Chem. Rev.  2002,  102:  3667 
  • 13f Qiao K. Yakoyama C. Chem. Lett.  2004,  33:  472 
  • 13g Sun W. Xia C.-G. Wang H.-W. Tetrahedron Lett.  2003,  44:  2409 
  • 13h Kamal A. Chouhan G. Tetrahedron Lett.  2005,  46:  1489 
  • 13i Earle MJ. Katdare SP. Seddon KR. Org. Lett.  2004,  6:  707 
  • 14a Cole AC. Jensen JL. Ntai I. Tran KLT. Weaver KJ. Forbes DC. Davis JH. J. Am. Chem. Soc.  2002,  124:  5962 
  • 14b Welton T. Chem. Rev.  1999,  99:  2071 
  • 14c Sheldon R. Chem. Commun.  2001,  23:  2399 
  • 14d Zhu HP. Yang F. Tang J. He MY. Green Chem.  2003,  5:  38 
  • 14e Hajipour AR. Rafiee F. Ruoho AE. Synlett  2007,  1118 
  • 14f Zhao G. Jiang T. Gao H. Han B. Huang J. Sun D. Green Chem.  2004,  6:  75 
  • 15a Yadav LDS. Awasthi C. Rai VK. Rai A. Tetrahedron Lett.  2007,  48:  8037 
  • 15b Yadav LDS. Patel R. Rai VK. Srivastava VP. Tetrahedron Lett.  2007,  48:  7793 
  • 15c Yadav LDS. Rai A. Rai VK. Awasthi C. Synlett  2007,  1905 
  • 15d Yadav LDS. Yadav S. Rai VK. Green Chem.  2006,  8:  455 
  • 15e Yadav LDS. Rai VK. Yadav S. Tetrahedron  2006,  62:  5464 
  • 15f Yadav LDS. Patel R. Srivastava VP. Synlett  2008,  583 
  • 15g Yadav LDS. Rai A. Rai VK. Awasthi C. Synlett  2008,  529 
  • 17a Kamimura A. Mitsudera H. Asano S. Kidera S. Kakehi A. J. Org. Chem.  1999,  64:  6353 
  • 17b Albertshofer K. Thayumanavan R. Utsumi N. Tanaka F. Barbas CF. Tetrahedron Lett.  2007,  48:  693 
  • 18a Miyata O. Shinada T. Naito T. Ninomiya I. Chem. Pharm. Bull.  1989,  37:  3158 
  • 18b Miyata O. Shinada T. Ninomiya I. Naito T. Date T. Okamura K. Inagaki S. J. Org. Chem.  1991,  56:  6556 
  • 18c Hassan AEA. Nishizono N. Minakawa N. Shuto S. Matsuda A. J. Org. Chem.  1996,  61:  6261 
  • 18d Nishimura K. Tomioka K. J. Org. Chem.  2002,  67:  431 
  • 19 Qian W. Pei L. Synlett  2006,  709 
  • 20a Watanabe T. Hayashi K. Yoshimatsu S. Sakai K. Takeyama S. Takashima K. J. Med. Chem.  1980,  23:  50 
  • 20b Senokuchi K. Nakai H. Nakayama Y. Odagaki Y. Sakaki K. Kato M. Maruyama T. Miyazaki T. Ito H. Kamiyasu K. Kim S. Kawamura M. Hamanaka N. J. Med. Chem.  1995,  38:  4508 
  • 21a Hong WP. Lim HN. Park HW. Lee K.-J. Bull. Korean Chem. Soc.  2005,  26:  655 
  • 21b Das B. Banerjee J. Chowdhury N. Majhi A. Chem. Pharm. Bull.  2006,  54:  1725 
  • 23 Basavaiah D. Hyma RS. Kumaragurubaran N. Tetrahedron  2000,  56:  5905 
  • 24 Mehdi H. Bodor A. Lantos D. Horváth IT. de Vas DE. Binnemans K. J. Org. Chem.  2007,  72:  1517 
  • 25 Cai J. Zhou Z. Zhao G. Tang C. Org. Lett.  2002,  4:  4723 
16

General Procedure for the Synthesis of Methyl β-Thiocyanato-α-formylhydrocinnamates 3 and Methyl β-Phenylsulfenyl-α-formylhydrocinnamates 4 A mixture of BH alcohol 1 (1 mmol) and NaNO3 (1 mmol) was stirred in 1 mL of [Hmim]HSO4 at 80 ˚C for 1-3 h (Table  [²] ). The reaction mixture was cooled to r.t. and NH4SCN or PhSH (1.1 mmol) was added. The mixture was further stirred at r.t. for 2-3 h. After completion of the reaction (monitored by TLC), the product was extracted with EtOAc (3  10 mL). The combined extract was dried over MgSO4, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography (hexane-EtOAc, 8.5:1.5) to afford the desired product 3 or 4. After isolation of the product, the remaining ionic liquid was washed with Et2O (2  10 mL) to remove any organic impurity, then H2SO4 (2.1 mmol in the case of compound 3 and 1 mmol in the case of 4) was added, the mixture was stirred at 80 ˚C for 1 h, and cooled to about -5 ˚C in an ice-salt bath. The precipitated solid [Na2SO4, (NH4)2SO4] was filtered out, and the filtrate was dried under vacuum to afford the IL [Hmim]HSO4, which was used in subsequent runs.
Data of Representative Compounds Compound 3a: white solid, yield 78%, mp 104-105 ˚C. IR (KBr): 3026, 2115, 1745, 1718, 1603, 1578, 1460, 1284, 1194, 764, 714 cm. ¹H NMR (400 MHz, CDCl3, TMS): d = 3.68 (dd, 1 H, J = 3.9, 2.1 Hz, 2-H), 3.82 (s, 3 H, MeOCO), 4.86 (d, 1 H, J = 3.9 Hz, 3-H), 7.14-7.32 (m, 5 Harom), 9.56 (d, 1 H, J = 2.1 Hz, CHO). ¹³C NMR (100 MHz, CDCl3, TMS): d = 36.6, 63.9, 52.8, 112.4, 126.9, 128.6, 129.2, 140.9, 169.1, 198.3. MS (EI): m/z = 249 [M+]. Anal. Calcd (%) for C12H11NO3S: C, 57.82; H, 4.45; N, 5.62. Found: C, 57.56; H, 4.57; N, 5.43.
Compound 4f: yellowish solid, yield 76%, mp 132-133 ˚C. IR (KBr): 3055, 2932, 1746, 1721, 1586, 1520, 1345, 1280, 1186, 760, 710 cm. ¹H NMR (400 MHz, CDCl3, TMS): d = 3.72 (dd, 1 H, J = 3.9, 2.1 Hz, 2-H), 3.81 (s, 3 H, MeOCO), 4.68 (d, 1 H, J = 3.9 Hz, 3-H), 7.24-8.27 (m, 9Harom), 9.54 (d, 1 H, J = 2.1 Hz, CHO). ¹³C NMR (100 MHz, CDCl3, TMS): d = 30.6, 52.7, 64.2, 121.6, 124.9, 127.4, 129.2, 129.8, 135.8, 148.2, 149.4, 169.0, 198.3. MS (EI): m/z = 345 [M+]. Anal. Calcd (%) for C17H15NO5S: C, 59.12; H, 4.38; N, 4.06. Found: C, 59.33; H, 4.74; N, 3.89.

22

General Procedure for the Synthesis of Methyl ( E )-α-Formylcinnamates 2 A stirred solution of BH alcohols 1 (1 mmol) and NaNO3 (1 mmol) in 1 mL of [Hmim]HSO4 was heated at 80 ˚C for 1-3 h (Table  [²] ). The reaction progress was monitored by TLC. Upon completion, the reaction mixture was cooled to r.t. and extracted with EtOAc (3 × 10 mL).The combined organic phase was dried over MgSO4, filtered, and evaporated under reduced pressure. The resulting crude product was purified by silica gel column chromatography using a gradient mixture of hexane-EtOAc (8:2) as eluent to give the pure cinnamates 2. The remaining ionic liquid was recycled for subsequent runs as described above using H2SO4 (1 mmol).¹6
Data of Representative Compound Compound 2a: white solid, yield 80%, mp 91-92 ˚C. IR (KBr): 3076, 2809, 2740, 1724, 1684, 1578, 1462, 1286, 1190, 760, 712 cm. ¹H NMR (400 MHz, CDCl3, TMS): δ = 3.87 (s, 3 H, MeOCO), 7.48-7.70 (m, 3 Harom), 7.86 (s, 1 H, CHPh), 8.04-8.12 (m, 2 Harom), 9.66 (s, 1 H, CHO). ¹³C NMR (100 MHz, CDCl3, TMS): δ = 52.6, 127.7, 129.4, 130.2, 131.3, 134.7, 154.6, 167.9, 187.6. MS (EI): m/z = 190 [M+]. Anal. Calcd (%) for C11H10O3: C, 69.46; H, 5.30. Found: C, 69.81; H, 5.14.