Semin Liver Dis 2008; 28(2): 210-217
DOI: 10.1055/s-2008-1073120
© Thieme Medical Publishers

Artificial and Bioartificial Liver Support

Travis J. McKenzie1 , Joseph B. Lillegard1 , Scott L. Nyberg1
  • 1Department of Surgery, Mayo Clinic, Rochester, Minnesota
Further Information

Publication History

Publication Date:
02 May 2008 (online)

ABSTRACT

Acute liver failure (ALF) is a widespread problem with an unfavorable prognosis. Currently, liver transplantation is the only direct means of treatment for patients in ALF. Due to the scarcity of donor organs, liver support technologies are being developed and clinically tested with the intent of supporting a patient in ALF until the patient regains native liver function or until a donor organ becomes available. Two major categories of devices are currently being tested. Artificial liver support is purely mechanical, including albumin dialysis. Bioartificial devices contain cellular material. No single system has reproducibly demonstrated improvement in patient mortality. However, with the advent of new technology and cell acquisition techniques, further randomized controlled trials will be necessary to determine the role of artificial and bioartificial liver support devices in the treatment of patients with ALF.

REFERENCES

  • 1 Khashab M, Tector A J, Kwo P Y. Epidemiology of acute liver failure.  Curr Gastroenterol Rep. 2007;  9 66-73
  • 2 Ostapowicz G, Fontana R J, Schiødt F V et al.. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States.  Ann Intern Med. 2002;  137 947-954
  • 3 Farges O, Kalil A N, Samuel D et al.. The use of ABO-incompatible grafts in liver transplantation: a life-saving procedure in highly selected patients.  Transplantation. 1995;  59 1124-1133
  • 4 Sorrentino F. Prime ricerche per la realizzatione di un fegato artificiale.  Chir Patol Sper. 1956;  4 1401
  • 5 Stange J, Ramlow W, Mitzner S, Schmidt R, Klinkmann H. Dialysis against a recycled albumin solution enables the removal of albumin bound toxins.  Artif Organs. 1993;  17 809-813
  • 6 Stange J, Mitzner S, Risler T et al.. Molecular adsorbent recycling system (MARS): clinical results of a new membrane-based blood purification system for bioartificial liver support.  Artif Organs. 1999;  23 319-330
  • 7 Steiner C, Sen S, Stange J, Williams R, Jalan R. Binding of bilirubin and bromosulphthalein to albumin: implications for understanding the pathophysiology of liver failure and its management.  Liver Transpl. 2004;  10 1531-1538
  • 8 Awad S S, Swaniker F, Magee J, Punch J, Bartlett R H. Results of a phase I trial evaluating a liver support device utilizing albumin dialysis.  Surgery. 2001;  130 354-362
  • 9 Khuroo M S, Khuroo M S, Farahat K L. Molecular adsorbent recirculating system for acute and acute-on-chronic liver failure: a meta-analysis.  Liver Transpl. 2004;  10 1099-1106
  • 10 Novelli G, Rossi M, Pugliese F et al.. Molecular adsorbents recirculating system treatment in acute-on-chronic hepatitis patients on the transplant waiting list improves model for end-stage liver disease scores.  Transplant Proc. 2007;  39 1864-1867
  • 11 Falkenhagen D, Strobl W, Vogt G et al.. Fractionated plasma separation and adsorption system: a novel system for blood purification to remove albumin bound substances.  Artif Organs. 1999;  23 81-86
  • 12 Santoro A, Faenza S, Mancini E et al.. Prometheus system: a technological support in liver failure.  Transplant Proc. 2006;  38 1078-1082
  • 13 Rifai K, Ernst T, Kretschmer U et al.. Prometheus: a new extracorporeal system for the treatment of liver failure.  J Hepatol. 2003;  39 984-990
  • 14 Herget-Rosenthal S. Citrate anticoagulated modified fractionated plasma separation and adsorption: first clinical efficacy and safety data in liver failure.  J Am Soc Nephrol. 2003;  14 729A
  • 15 Kramer L. Clinical experience with artifical liver support in chronic liver failure with encephalopathy [abstract].  ASAIO J. 2000;  a211
  • 16 Evenepoel P, Laleman W, Wilmer A et al.. Prometheus versus molecular adsorbents recirculating system: comparison of efficiency in two different liver detoxification devices.  Artif Organs. 2006;  30 276-284
  • 17 Sussman N L, Kelly J H. Extracorporeal liver support: cell-based therapy for the failing liver.  Am J Kidney Dis. 1997;  30(suppl 4) S66-S71
  • 18 Allen J W, Hassanein T, Bhatia S N. Advances in bioartificial liver devices.  Hepatology. 2001;  34 447-455
  • 19 Spray D C, Fujita M, Saez J C et al.. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures.  J Cell Biol. 1987;  105 541-551
  • 20 Yarmush M L, Dunn J C, Tompkins R G. Assessment of artificial liver support technology.  Cell Transplant. 1992;  1 323-341
  • 21 Ellis A J, Hughes R D, Nicholl D et al.. Temporary extracorporeal liver support for severe acute alcoholic hepatitis using BioLogic-DT.  Int J Artif Organs. 1999;  22 27-34
  • 22 Nyberg S L, Remmel R P, Mann H J et al.. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver.  Ann Surg. 1994;  220 59-67
  • 23 Ellis A J, Sussman N L, Kelly J H, Williams R. Clinical experience with an extracorporeal liver assist device. In: Lee W, Williams R Acute Liver Failure. Cambridge; Cambridge University Press 1997: 255-265
  • 24 Mavri-Damelin D, Damelin L H, Eaton S et al.. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia.  Biotechnol Bioeng. 2008;  99 644-651
  • 25 Ellis A J, Hughes R D, Wendon J et al.. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure.  Hepatology. 1996;  24 1446-1451
  • 26 Patience C, Takeuchi Y, Weiss R A. Infection of human cells by an endogenous retrovirus of pigs.  Nat Med. 1997;  3 282-286
  • 27 Sussman N L, Gislason G T, Conlin C A, Kelly J H. The Hepatix extracorporeal liver assist device: initial clinical experience.  Artif Organs. 1994;  18 390-396
  • 28 Patience C, Patton G S, Takeuchi Y et al.. No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys.  Lancet. 1998;  352 699-701
  • 29 Paradis K, Langford G, Long Z et al.. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue.  Science. 1999;  285 1236-1241
  • 30 Pitkin Z, Switzer W, Chapman L. An interim analysis of PERV infectivity in 74 patients treated with a bioartificial liver in a prospective, randomized, multicenter controlled trial.  Hepatology. 2001;  34 249A
  • 31 Watanabe F D, Mullon C J, Hewitt W R et al.. Clinical experience with a bioartificial liver in the treatment of severe liver failure: a phase I clinical trial.  Ann Surg. 1997;  225 484-491
  • 32 Demetriou A A, Brown Jr R S, Busuttil R W et al.. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure.  Ann Surg. 2004;  239 660-667
  • 33 Sauer I M, Kardassis D, Zeillinger K et al.. Clinical extracorporeal hybrid liver support: phase I study with primary porcine liver cells.  Xenotransplantation. 2003;  10 460-469
  • 34 Mazariegos G V, Kramer D J, Lopez R C et al.. Safety observations in phase I clinical evaluation of the Excorp Medical bioartificial liver support system after the first four patients.  ASAIO J. 2001;  47 471-475
  • 35 Van De Kerkhove M P, Di Florio E, Scuderi V et al.. Phase I clinical trial with the AMC-bioartificial liver.  Int J Artif Organs. 2002;  25 950-959
  • 36 Uchino J, Tsuburaya T, Kumagai F et al.. A hybrid bioartificial liver composed of multiplated hepatocyte monolayers.  ASAIO Trans. 1988;  34 972-977
  • 37 Margulis M S, Erukhimov E A, Andreiman L A, Viksna L M. Temporary organ substitution by hemoperfusion through suspension of active donor hepatocytes in a total complex of intensive therapy in patients with acute hepatic insufficiency.  Resuscitation. 1989;  18 85-94
  • 38 Matsumura K N, Guevara G R, Huston H et al.. Hybrid bioartificial liver in hepatic failure: preliminary clinical report.  Surgery. 1987;  101 99-103
  • 39 Matsushita T, Amiot B, Hardin J, Platt J L, Nyberg S L. Membrane pore size impacts performance of a xenogeneic bioartificial liver.  Transplantation. 2003;  76 1299-1305
  • 40 Nyberg S L, Hardin J, Amiot B et al.. Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver.  Liver Transpl. 2005;  11 901-910
  • 41 Cascio S M. Novel strategies for immortalization of human hepatocytes.  Artif Organs. 2001;  25 529-538
  • 42 Kulig K M, Vacanti J P. Hepatic tissue engineering.  Transpl Immunol. 2004;  12(3-4) 303-310
  • 43 Okamura K, Asahina K, Fujimori H et al.. Generation of hybrid hepatocytes by cell fusion from monkey embryoid body cells in the injured mouse liver.  Histochem Cell Biol. 2006;  125 247-257
  • 44 Tateno C, Yoshizane Y, Saito N et al.. Near completely humanized liver in mice shows human-type metabolic responses to drugs.  Am J Pathol. 2004;  165 901-912
  • 45 Sandgren E P, Palmiter R D, Heckel J L et al.. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene.  Cell. 1991;  66 245-256
  • 46 Sandgren E P, Merlino G. Hepatocarcinogenesis in transgenic mice.  Prog Clin Biol Res. 1995;  391 213-222
  • 47 Rhim J A, Sandgren E P, Palmiter R D, Brinster R L. Complete reconstitution of mouse liver with xenogeneic hepatocytes.  Proc Natl Acad Sci U S A. 1995;  92 4942-4946
  • 48 Azuma H, Paulk N, Ranade A et al.. Robust expansion of human hepatocytes in Fah - / - /Rag2 - / - /Il2rg - / - mice.  Nat Biotechnol. 2007;  25 903-910
  • 49 Grompe M, Lindstedt S, Al-Dhalimy M et al.. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I.  Nat Genet. 1995;  10 453-460
  • 50 Overturf K, Al-Dhalimy M, Manning K, Ou C N, Finegold M, Grompe M. Ex vivo hepatic gene therapy of a mouse model of Hereditary Tyrosinemia Type I.  Hum Gene Ther. 1998;  9 295-304

Scott L NybergM.D. Ph.D. 

Professor of Surgery, Department of Surgery, Mayo Clinic

200 First Street SW, Rochester, MN 55905

Email: nyberg.scott@mayo.edu

    >