L. ACKERMANN,* A. ALTHAMMER (GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN, GERMANY)
Phosphoric Acid Diesters as Efficient Catalysts for Hydroaminations of Nonactivated Alkenes and an Application to Asymmetric Hydroaminations

Hydroamination of Nonactivated Alkenes

Significance: A catalytic amount of Brønsted acid enables high yielding intramolecular hydroaminations of electronically unactivated alkenes with basic amines. Screenings identified phosphoric acid \(\text{I} \) as the most active catalyst for this cycloisomerization. Substrates with ether, nitro, ester, or chloro functionalities are tolerated. By using enantiomerically pure phosphoric acid (R)-\(\text{I}a \) the authors show an unprecedented example of a metal-free asymmetric hydroamination of nonactivated alkenes, albeit with modest selectivity (er = 58.5:41.5).

Comment: This intramolecular addition of an amine to a C–C double bond depicts a direct and atom-economical access to N-heterocycles, which are ubiquitous in natural products as well as biologically active compounds. Most organocatalytic additions of N-nucleophiles to olefins require activation of the alkene functionality. The observed effectiveness of this addition might be due to the intramolecular nature of this cycloisomerization. A screening of different enantiopure phosphoric acids might result in higher enantiomeric ratios.

Selected examples:

- R = SiPh\(_3\) 93% yield
- R = 3,5-(F\(_3\)C)\(_2\)C\(_6\)H\(_3\) 85% yield
- R = OMe, NO\(_2\), CO\(_2\)Me or Cl 53% yield
- R = OMe, NO\(_2\), CO\(_2\)Me or Cl 95–97% yield
- R = OMe, NO\(_2\), CO\(_2\)Me or Cl 72% yield
 er = 58.5:41.5