L. ACKERMANN,* A. ALTHAMMER (GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN, GERMANY)
Phosphoric Acid Diesters as Efficient Catalysts for Hydroaminations of Nonactivated Alkenes and an Application to Asymmetric Hydroaminations
Synlett 2008, 995-998.

Hydroamination of Nonactivated Alkenes

Significance: A catalytic amount of Bronsted acid enables high yielding intramolecular hydroaminations of electronically unactivated alkenes with basic amines. Screenings identified phosphoric acid 1 as the most active catalyst for this cycloisomerization. Substrates with ether, nitro, ester, or chloro functionalities are tolerated. By using enantiomerically pure phosphoric acid (R)-1a the authors show an unprecedented example of a metal-free asymmetric hydroamination of nonactivated alkenes, albeit with modest selectivity (er = 58.5:41.5).

Comment: This intramolecular addition of an amine to a C-C double bond depicts a direct and atom-economic access to N-heterocycles, which are ubiquitous in natural products as well as biologically active compounds. Most organocatalytic additions of N-nucleophiles to olefins require activation of the alkene functionality. The observed effectiveness of this addition might be due to the intramolecular nature of this cycloisomerization. A screening of different enantiopure phosphoric acids might result in higher enantiomeric ratios.

Selected examples:

93% yield
85% yield
53% yield
R = OMe, NO2, CO2Me or Cl
95–97% yield
72% yield
er = 58.5:41.5