Hydroamination of Nonactivated Alkenes

Significance: A catalytic amount of Brønsted acid enables high yielding intramolecular hydroaminations of electronically unactivated alkenes with basic amines. Screenings identified phosphoric acid **1** as the most active catalyst for this cycloisomerization. Substrates with ether, nitro, ester, or chloro functionalities are tolerated. By using enantiomerically pure phosphoric acid (R)-**1a** the authors show an unprecedented example of a metal-free asymmetric hydroamination of nonactivated alkenes, albeit with modest selectivity (er = 58.5:41.5).

Comment: This intramolecular addition of an amine to a C–C double bond depicts a direct and atom-economical access to N-heterocycles, which are ubiquitous in natural products as well as biologically active compounds. Most organocatalytic additions of N-nucleophiles to olefins require activation of the alkene functionality. The observed effectiveness of this addition might be due to the intramolecular nature of this cycloisomerization. A screening of different enantiopure phosphoric acids might result in higher enantiomeric ratios.

Selected examples:

- **93% yield**
- **85% yield**
- **53% yield**
- **R = OMe, NO$_2$, CO$_2$Me or Cl, 95–97% yield**
- **72% yield**
 er = 58.5:41.5

SYNFACTS Contributors: Benjamin List, Frank Lay
Synfacts 2008, 6, 0639-0639 Published online: 21.05.2008
DOI: 10.1055/s-2008-1072762; Reg-No.: B04008SF