SPOTLIGHT 1265

Synlett Spotlight 238

This feature focuses on a reagent chosen by a postgraduate, highlighting the uses and preparation of the reagent in

Disulfur Dichloride (S₂Cl₂)

Compiled by Bárbara Vasconcellos da Silva

Bárbara Vasconcellos da Silva was born in Rio de Janeiro, Brazil in 1981. She received her Chemistry degree from Universidade Federal do Rio de Janeiro in 2007 and she is currently working toward her Ph.D. in organic synthesis under the supervision of Dr. Angelo da Cunha Pinto at the same university. Her research interests focus on the synthesis of isatins and oxindole derivatives.

Centro de Tecnologia, Bloco A, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil E-mail: barbara.iq@gmail.com

Introduction

current research

Disulfur dichloride (S_2Cl_2), also known as sulfur chloride (SCl), is widely used in organic synthesis as a sulfurizing and chlorinating agent. Sulfide compounds are found in many natural products and may have useful biological properties. This reagent has been explored for the preparation of heteroaryl disulfides, symmetric aryl di-, tri-, and tetrasulfides, episulfides and benzopolysulfides. Moreover, S_2Cl_2 is a suitable substrate for the synthesis of dialkoxy disulfide, or for the Herz reaction. It decomposes into SO_2 , HCl, and S_8 when exposed to wet air due to reaction with water.

 S_2Cl_2 is a smelly, clear, yellowish-red, oily liquid. It should be used with care and proper precautions must be taken because it is toxic, corrosive, and harmful to the environment.

Preparation

S₂Cl₂ is synthesized by partial chlorination of elemental sulfur⁹ and is also commercially available.

$$S_8 + 4 Cl_2 \longrightarrow 4 S_2 Cl_2$$

Scheme 1

Abstracts

(A) Korn and Knochel² have described the use of S_2Cl_2 to achieve functionalized aryl and heteroaryl disulfides from functionalized zinc organometallics. All the reactions were carried out at $-80\,^{\circ}C$, producing within ten minutes the expected disulfide in 62-99% yield.

R = CI, OMe, EtO_2C , CN

$$\begin{array}{c|c} & S_2CI_2\\ \hline & (0.5 \text{ equiv})\\ \hline & -80 \text{ °C} & EtO_2C & O & S-S & O & CO_2Et \\ \end{array}$$

(B) An equilibrated equimolecular mixture of S₂Cl₂ and DABCO (1,4-diazobicyclo[2.2.2]octane) has been used for treatment of N-substituted 2,5-dimethylpyrroles **1** giving pentathiepinopyrroles **2** in moderate yields. Further reaction of **2** with the same mixture at room temperature has resulted in an extensive reaction cascade, to give bis(dithiolo)pyrrole **3** in high yield.¹⁰

$$\begin{array}{c} S_2Cl_2 \\ Me \end{array} \begin{array}{c} S_2Cl_2 \\ O \circ C \\ Me \end{array} \begin{array}{c} S_2Cl_2 \\ Me \end{array} \begin{array}{c} S_2Cl_2 \\ DABCO \\ Me \end{array} \begin{array}{c} S \\ R \\ S \end{array}$$

R = Bn, Me, Et, *n*-Pr, *i*-Pr

SYNLETT 2008, No. 8, pp 1265–1266 Advanced online publication: 16.04.2008 DOI: 10.1055/s-2008-1072741; Art ID: V24507ST © Georg Thieme Verlag Stuttgart · New York 1266 SPOTLIGHT

(C) Chiral benzopolysulfides are rarely described in the literature. Sato and co-workers⁵ have reported the synthesis of axially chiral benzopentathiepins by treatment of dithiastannole with S₂Cl₂.

(D) Reaction of a diol with S_2Cl_2 resulted in the first example of a stable and fully characterized cyclic dialkoxy disulfide under mild conditions.¹¹

$$\begin{array}{c|c} \text{OH} & \begin{array}{c} S_2Cl_2 \\ \hline \\ \text{OH} \end{array} \end{array} \begin{array}{c} \begin{array}{c} O\\ \\ \\ \end{array} S$$

(E) S₂Cl₂ was reacted with 1,7-s-hydrindacenedione dioximes leading to the first example of bis[1,2,3]dithiazolo-s-indacene. ¹² In this example, S₂Cl₂ has also been found as a chlorinating agent.

HON NOH
$$S_2Cl_2$$
 $i \cdot Bu_3N$, THF S

(F) Treatment of 1,5-cyclooctadiene with S_2Cl_2 , followed by reaction with sulfuryl chloride (SO_2Cl_2) provides high yields of 2,6-dichloro-9-thiabicyclo[3.3.1]nonane in a robust and convenient manner. This product may be used as connector and as a chiral scaffold through nucleophilic substitution of chloride.¹³

(G) S_2Cl_2 is a very effective reagent for the preparation of nitrogensubstituted thiosulfinyl compounds $(R_2N)_2S=S$. When the substituted 1,2-ethylenediamine (1) containing electron-withdrawing groups on the nitrogen atoms was treated with n-BuLi in Et₂O and then with S_2Cl_2 , compound 2, a new heterocyclic system, was obtained in 57% yield. The reaction in THF gave sulfoxide 3 in 27% yield.¹⁴

(H) The reaction of aldehyde hydrazones or phenyldiazomethane with S_2Cl_2 in the presence of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or Et_3N gave 1,3,4-thiadiazoles in good to moderate yields. The azines ${\bf 4a}$ and ${\bf 4b}$ were obtained as side products. 15

References

- Tan, R. X.; Jensen, P. R.; Williams, P. G.; Fenical, W. J. Nat. Prod. 2004, 67, 1374.
- (2) Korn, T. J.; Knochel, P. Synlett 2005, 1185.
- (3) Zysman-Colman, E.; Harpp, D. N. J. J. Org. Chem. 2003, 68, 2487.
- (4) Sugihara, Y.; Noda, K.; Nakayama, J. Tetrahedron Lett. 2000, 41, 8913.
- (5) Sato, R.; Ohta, H.; Yamamoto, T.; Nakajo, S.; Ogawa, S.; Alam, A. *Tetrahedron Lett.* **2007**, 48, 4991.
- (6) Aebisher, D.; Brzostowska, E. M.; Mahendran, A.; Greer, A. J. Org. Chem. 2007, 72, 2951.
- (7) Braverman, S.; Pechenick, T.; Gottlieb, H. E. Tetrahedron Lett. 2003, 44, 777.
- (8) Koutentis, P. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 2002, 315.

- (9) Dodd, R. E.; Robinson, P. L. Experimental Inorganic Chemistry, 2nd ed.; Elsevier Publishing Company: New York, 1957, 218.
- (10) Amelichev, S. A.; Aysin, R. R.; Konstantinova, L. S.; Obruchnikova, N. V.; Rakitin, O. A.; Rees, C. W. *Org. Lett.* **2005**, *7*, 5725.
- (11) Zysman-Colman, E.; Nevins, N.; Eghbali, N.; Snyder, J. P.; Harpp, D. N. J. Am. Chem. Soc. 2006, 128, 291.
- (12) Macho, S.; Miguel, D.; Gómez, T.; Rodríguez, T.; Torroba, T. J. Org. Chem. 2005, 70, 9314.
- (13) Díaz, D. D.; Converso, A.; Sharpless, B.; Finn, M. G. Molecules 2006, 11, 212.
- (14) Yoshida, S.; Sugihara, Y.; Nakayama, J. Tetrahedron Lett. 2007, 48, 8116.
- (15) Okuma, K.; Nagakura, K.; Nakajima, Y.; Kubo, K.; Shioji, K. *Synthesis* **2004**, 1929.