Synthesis 2008(18): 2905-2918  
DOI: 10.1055/s-2008-1067242
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Comprehensive Experimental and Theoretical Studies of Configurationally Labile Epimeric Diamine Complexes of α-Lithiated Benzyl Carbamates

Heiko Lange, Robert Huenerbein, Birgit Wibbeling, Roland Fröhlich, Stefan Grimme*, Dieter Hoppe*
Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany
Fax: +49(251)8336531; e-Mail: dhoppe@uni-muenster.de; e-Mail: grimmes@uni-muenster.de;
Further Information

Publication History

Received 16 April 2008
Publication Date:
22 August 2008 (online)

Abstract

Different primary benzyl-type carbamates were deprotonated by sec-butyllithium in the presence of a tert-leucinol-derived bis(oxazoline) ligand. The resulting configurationally labile epimeric complexes equilibrated and one diastereomer was strongly favored in the equilibria. After dynamic thermodynamic resolution, the complexes could be trapped with different classes of electrophiles to yield highly enantioenriched secondary benzyl carb­amates. The stereochemical course of the substitution reactions was elucidated. High-level quantum chemical investigations were performed and allowed a prediction of both the favored complex and the enantiomeric excess that could be expected within the reactions.

    References

  • Reviews:
  • 1a Hoppe D. Hense T. Angew. Chem., Int. Ed. Engl.  1997,  36:  2282 ; Angew. Chem. 1997, 109, 2376
  • 1b Hoppe D. Marr F. Brüggemann M. Top. Organomet. Chem.  2003,  5:  61 
  • 1c Beak P. Johnson T. Kim D. Kim S. Top. Organomet. Chem.  2003,  5:  139 
  • 1d Toru T. Nakamura S. Top. Organomet. Chem.  2003,  5:  177 
  • 1e Hoppe D. Christoph G. The Chemistry of Organolithium Compounds   Rappoport Z. Marek I. Wiley-VCH; Chichester: 2004.  p.1058 
  • In case of configurationally stable lithiated intermediates, catalytic asymmetric reactions are possible:
  • 2a McGrath MJ. O’Brien P. Synthesis  2006,  2233 
  • 2b McGrath MJ. O’Brien P. J. Am. Chem. Soc.  2005,  127:  16378 
  • Selected early contributions:
  • 3a Still WC. Sreekumar C. J. Am. Chem. Soc.  1980,  102 1201 
  • 3b Hoppe D. Krämer T. Angew. Chem., Int. Ed. Engl.  1986,  25:  160 ; Angew. Chem. 1986, 98, 171
  • 3c Hoppe D. Carstens A. Krämer T. Angew. Chem., Int. Ed. Engl.  1990,  29:  1422 ; Angew. Chem. 1990, 102, 1455
  • 3d Carstens A. Hoppe D. Tetrahedron  1994,  50:  6097 
  • 3e Hoppe D. Hintze F. Tebben P. Angew. Chem., Int. Ed. Engl.  1990,  29:  1424 ; Angew. Chem. 1990, 102, 1457
  • 4a Kerrick ST. Beak P. J. Am. Chem. Soc.  1991,  113:  9708 
  • 4b Gawley RE. Zhang Q. J. Am. Chem. Soc.  1993,  115:  7515 
  • 4c Pippel DJ. Weisenburger GA. Wilson SR. Beak P. Angew. Chem. Int. Ed.  1998,  37:  2522 ; Angew. Chem. 1998, 110, 2600
  • 4d Weisenburger GA. Faibish NC. Pippel DJ. Beak P. J. Am. Chem. Soc.  1999,  121:  9522 
  • 5 Basu A. Beak P. J. Am. Chem. Soc.  1996,  118:  1575 
  • 6a Hammerschmidt F. Hanninger A. Chem. Ber.  1995,  128:  1069 
  • 6b Hammerschmidt F. Hanninger A. Peric B. Völlenkle H. Werner A. Eur. J. Org. Chem.  1999,  3511 
  • See as well:
  • 7a Derwing C. Hoppe D. Synthesis  1996,  149 
  • 7b Derwing C. Frank H. Hoppe D. Eur. J. Org. Chem.  1999,  3519 
  • 8a Hoppe D. Kaiser B. Stratmann O. Fröhlich R. Angew. Chem., Int. Ed. Engl.  1997,  36:  2784 ; Angew. Chem. 1997, 109, 2872
  • 8b Stratmann O. Kaiser B. Fröhlich R. Meyer O. Hoppe D. Chem. Eur. J.  2001,  7:  423 
  • 9a Nakamura S. Nakagawa R. Watanabe Y. Toru T. Angew. Chem. Int. Ed.  2000,  39:  353 ; Angew. Chem. 2000, 112, 361
  • 9b Nakamura S. Nakagawa R. Watanabe Y. Toru T. J. Am. Chem. Soc.  2000,  122:  11340 
  • 9c Nakamura S. Furutani A. Toru T. Eur. J. Org. Chem.  2002,  1690 
  • 9d Nakamura S. Ito Y. Wang L. Toru T. J. Org. Chem.  2004,  69:  1581 
  • For reviews on different enantiodeterming steps and mechanistic pathways:
  • 10a Beak P. Anderson DR. Curtis MD. Laumer JM. Pippel DJ. Weisenburger GA. Acc. Chem. Res.  2000,  33:  715 
  • 10b Basu A. Thayumanavan S. Angew. Chem. Int. Ed.  2002,  41:  716 ; Angew. Chem. 2002, 114, 740
  • 10c Especially for dynamic thermodynamic resolution: Park YS. Yum EK. Basu A. Beak P. Org. Lett.  2006,  8:  2667 
  • 11 Zarges W. Marsch M. Harms K. Koch W. Frenking G. Boche G. Chem. Ber.  1991,  124:  543 
  • 12a Rein K. Goicoechea-Pappas M. Anklekar TV. Hart GC. Smith GA. Gawley RE. J. Am. Chem. Soc.  1989,  111:  2211 
  • 12b Meyers AI. Guiles J. Warmus JS. Gonzales MA. Tetrahedron Lett.  1991,  32:  5505 
  • A pyramidal carbon atom is not a precondition for the occurrence of chirality in an ion pair as long as the cation is connected to one particular enantiotopic face. For the situation in lithiated benzyl sulfones see:
  • 13a Boche G. Angew. Chem., Int. Ed. Engl.  1989,  28:  277 ; Angew. Chem. 1989, 101, 286
  • 13b Gais H.-J. Hellmann GZ. Lindner HJ. Angew. Chem., Int. Ed. Engl.  1990,  29:  100 ; Angew. Chem. 1990, 102, 96
  • 13c Gais H.-J. Hellmann GZ. J. Am. Chem. Soc.  1992,  114:  4439 
  • 14a Cram DJ. Mateos JL. Hauck F. Langmann A. Kopecky KR. Nielsen WD. Allinger J. J. Am. Chem. Soc.  1959,  81:  5774 
  • 14b Cram DJ. Kingsbury CA. Rickborn B. J. Am. Chem. Soc.  1961,  83:  3688 
  • 14c Nozaki H. Aratani T. Toraya T. Noyori R. Tetrahedron  1971,  27:  905 
  • 15 For a flattened benzylic carbanionic center in a crystal structure see: Boche G. Marsch M. Harbach J. Harms K. Ledig B. Schubert F. Lohr JCW. Ahlbrecht H. Chem. Ber.  1993,  126:  1887 
  • 16 Paquette LA. Gilday JP. Ra CS. J. Am. Chem. Soc.  1987,  109:  6858 
  • 17 Brook AG. Pascoe JD. J. Am. Chem. Soc.  1971,  93:  6224 
  • 18a Wright A. West R. J. Am. Chem. Soc.  1974,  96:  3214 
  • 18b Wright A. West R. J. Am. Chem. Soc.  1974,  96:  3227 
  • 18c Linderman RJ. Ghannam A. J. Am. Chem. Soc.  1990,  112:  2392 
  • 19 Concerning the stereochemistry of the benzylic position within [1,4]-reverse-Brook rearrangements: Bousbaa J. Ooms F. Krief A. Tetrahedron Lett.  1997,  38:  7625 
  • 20a Komine N. Wang L.-F. Tomooka K. Nakai T. Tetrahedron Lett.  1999,  40:  6809 
  • 20b Tomooka K. Wang L.-F. Komine N. Nakai T. Tetrahedron Lett.  1999,  40:  6813 
  • 20c Tomooka K. Wang L.-F. Okazaki F. Nakai T. Tetrahedron Lett.  2000,  41:  6121 
  • 21 Chiral bis(oxazoline) ligands have been used in a variety of asymmetric reactions in order to introduce chiral information, for a recent review see: Desimoni G. Faita G. Jørgensen KA. Chem. Rev.  2006,  106:  3561 
  • 22 Bis(oxazoline) 9d was prepared according to: Denmark SE. Nakajima N. Nicaise OJ.-C. Faucher A.-M. Edwards JP. J. Org. Chem.  1995,  60:  4884 
  • 23a Hoppe D. Brönneke A. Synthesis  1982,  1045 
  • 23b Hintze F. Hoppe D. Synthesis  1992,  1216 
  • 24a Hoffmann RW. Lanz J. Metternich R. Tarara G. Hoppe D. Angew. Chem., Int. Ed. Engl.  1987,  26:  1145 ; Angew. Chem., 1987, 99, 1196
  • 24b Hoffmann RW. Rühl T. Harbach J. Liebigs Ann. Chem.  1992,  725 
  • 25a Lange H. Huenerbein R. Fröhlich R. Grimme S. Hoppe D. Chem. Asian J.  2008,  3:  78 
  • 25b Lange H. Huenerbein R. Fröhlich R. Grimme S. Hoppe D. Chem. Asian J.  2008,  3:  500 
  • B97-D:
  • 27a Grimme S. J. Comput. Chem.  2004,  25:  1463 
  • 27b Grimme S. J. Comput. Chem.  2006,  27:  1787 
  • TZVPP-basis and TZVP-basis:
  • 27c Schäfer A. Huber C. Ahlrichs R. J. Chem. Phys.  1994,  100:  5829 
  • SCS-MP2:
  • 27d Grimme S. J. Chem. Phys.  2003,  118:  9095 
  • 28a Clemente FR. Houk KN. J. Am. Chem. Soc.  2005,  127:  11294 
  • 28b Gordillo R. Houk KN. J. Am. Chem. Soc.  2006,  128:  3543 
  • 29 For a first extension of the methodology employing primary S-benzyl thiocarbamates, see: Lange H. Bergander R. Fröhlich R. Kehr S. Nakamura S. Shibata N. Toru T. Hoppe D. Chem. Asian J.  2008,  3:  88 
  • 30 Yanagisawa A. Nakashima H. Nakatsuka Y. Ishiba A. Yamamoto H. Bull. Chem. Soc. Jpn.  2001,  74:  1129 
  • For examples for the addition of carboxylic acid chlorides to mesomerically stabilized α-lithiated carbamates under inversion of configuration, see:
  • 31a

    Ref. 3c and 3d.

  • 31b Zschage O. Schwark J.-R. Hoppe D. Angew. Chem., Int. Ed. Engl.  1990,  29:  296 ; Angew. Chem. 1990, 102, 336
  • 31c Zschage O. Schwark J.-R. Krämer T. Hoppe D. Tetrahedron  1992,  48:  8377 
  • 31d Seppi M. Kalkofen R. Reupohl J. Fröhlich R. Hoppe D. Angew. Chem. Int. Ed.  2004,  43:  1423 ; Angew. Chem. 2004, 116, 1447
  • Ester (+)-(S)-20d was prepared by asymmetric lithiation of benzyl carbamate 19 in the presence of chiral diamine (-)-sparteine (7) in n-hexane at -78 ˚C (4 M soln). Trapping of the equilibrated and crystallized intermediate epimeric complex (S C)-15˙7 with CO2 at -78 ˚C after 4 h and subsequent esterification of the resulting carboxylic acid (S)-22 with diazomethane yielded 78% of (+)-(S)-20d with 97% ee (HPLC) {[α]D ²0 +107.2 (c 0.92, MeOH)}. Compare:
  • 33a

    ref. 1a.

  • 33b Retzow S. Diploma Thesis   University of Kiel; Germany: 1990. 
  • 34 Yang WK. Cho BT. Tetrahedron: Asymmetry  2000,  11:  2947 
  • 35 Corey EJ. Schmidt G. Tetrahedron Lett.  1979,  20:  399 
  • 38 Tomooka K. Shimizu H. Nakai T. J. Organomet. Chem.  2001,  624:  364 ; and references cited therein
  • Turbomole V5.9:
  • 39a

    Ahlrichs, R. et al.; University of Karlsruhe: Germany, 2006, see: http://www.turbomole.com.

  • ‘grid m4’:
  • 39b Treutler O. Ahlrichs R. J. Chem. Phys.  1995,  102:  346 
  • RI-approximation:
  • 39c Eichkorn K. Treutler O. Öhm H. Häser M. Ahlrichs R. Chem. Phys. Lett.  1995,  242:  652 
  • 39d Eichkorn K. Weigend F. Treutler O. Ahlrichs R. Theor. Chem. Acc.  1997,  97:  119 
  • RI-MP2:
  • 39e Sierka M. Hogekamp A. Ahlrichs R. J. Chem. Phys.  2003,  118:  9136 
  • 39f Weigend F. Häser M. Theor. Chem. Acc.  1997,  97:  331 
  • 39g Weigend F. Häser M. Patzelt H. Ahlrichs R. Chem. Phys. Lett.  1998,  294:  143 
  • 41 Lange H. Fröhlich R. Hoppe D. Tetrahedron  2008,  64:  9123 
  • 42 Kofron WG. Baclawski LM. J. Org. Chem.  1976,  41:  1879 
  • 43 de Boer TJ. Backer HJ. Org. Synth. Coll. Vol. IV   John Wiley & Sons; London: 1963.  p.250 
  • 44a Blessing RH. Acta Crystallogr., Sect. A  1995,  51:  33 
  • 44b Blessing RH. J. Appl. Cryst.  1997,  30:  421 
  • 45 Otwinowski Z. Borek D. Majewski W. Minor W. Acta Crystallogr., Sect. A  2003,  59:  228 
  • 46 Sheldrick GM. Acta Crystallogr., Sect. A  1990,  46:  467 
  • 47 SHELXL-97: Sheldrick GM. Acta Crystallogr., Sect. A  2008,  64:  112 
26

Within a dynamic thermodynamic resolution: ΔΔG = RT˙ln(e.r.), ΔΔE ≈ ΔΔH(0 K) ≈ ΔΔG = ΔΔH - TΔΔS.

32

X-ray crystal structure analysis for (R)-20f: formula C21H24BrNO3, M = 418.32, colorless crystals 0.30 × 0.30 × 0.15 mm, a = 5.774(1), b = 17.816(1), c = 19.291(1) Å, V = 1984.5(4) ų, ρcalcd = 1.400 g cm, µ = 29.81 cm, empirical absorption correction (0.468 ≤ T ≤ 0.663), Z = 4, orthorhombic, space group P212121 (No. 19), λ = 1.54178 Å, T = 223 K, ω and ϕ scans, 9441 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å, 3384 independent (R int = 0.034) and 3338 observed reflections [I ≤ 2 σ(I)], 239 refined parameters, R= 0.028, R w ² = 0.074, Flack parameter -0.021(15), max. residual electron density 0.28 (-0.24) e Å, hydrogen atoms calculated and refined as riding atoms, CCDC 684786.

36

All the bis(oxazoline) 9d containing complexes calculated show values for this sum of angles between 314˚ [(R C)-33˙9d] and 316˚ [(R C)-32˙9d] for the favored R C-configured epimers and values around 312˚ to 313˚ for the unfavored S C-configured epimers.

37

X-ray crystal structure analysis for (S,S)-29: formula C21H29NO2Si, M = 355.54, colorless crystals 0.25 × 0.06 × 0.05 mm, a = 22.666(1), b = 7.897(1), c = 12.669(1) Å, β = 108.45(1)˚, V = 2151.1(3) ų, ρcalcd = 1.0981 g cm, µ = 10.52 cm, empirical absorption correction (0.779 ≤ T ≤ 0.949), Z = 4, monoclinic, space group C2 (No. 5), λ = 1.54178 Å, T = 223 K, ω and ϕ scans, 5904 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.59 Å, 2448 independent (R int = 0.048) and 1962 observed reflections [I ≤ 2 σ(I)], 254 refined parameters, R= 0.052, R w ² = 0.122, Flack parameter 0.02 (6), max. residual electron density 0.17 (-0.23) e Å, hydrogen atoms calculated and refined as riding atoms, CCDC 684785.

40

Tables containing the atom coordinates of the different complexes can be obtained from the author upon request.

48

SCHAKAL: Keller, E. University of Freiburg, Germany, 1997

49

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data request/cif.