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Rhodium-Catalyzed Enantioselective 

Cycloaddition Route to Indolizidines

Significance: Described herein is a synthesis of 

indolizidines by an asymmetric Rh(I)-catalyzed 

[2+2+2] cycloaddition of 1,1-disubstituted alkenyl 

isocyanates to terminal alkynes. The reaction pro-

ceeds in moderate to high yields with a high level 

of enantio- and regioselectivity in the presence of 

the phosphoramidite ligands. Aliphatic alkynes 

gave lactams A as major products whereas vinylo-

gous amides B predominated with aryl alkynes. 

The formation of 2-pyridones E as the major 

byproduct was suppressed under high dilution re-

action conditions (typically 0.04 M). The isolated 

yields were low with sterically demanding substit-

uents (e.g., R1 = i-Pr, Cy) and in such reactions an 

increase in the 2-pyridone byproduct was ob-

served, presumably due to a slow rate of coordi-

nation–insertion of the alkene with Rh.

Comment: The indolizidine and quinolizidine 

framework are present in many biologically impor-

tant natural products (J. R. Linddell Nat. Prod. 

Rep. 2002, 773; J. P. Michael Nat. Prod. Rep. 

2007, 191), for example, marine alkaloids cylindri-

cine A–F (see review below). This present work 

constitutes an extension of the methodology pre-

viously applied by the Rovis group in the synthesis 

of the natural product (+)-lasubine II demonstrat-

ing the use of this methodology (J. Am. Chem. 

Soc. 2006, 128, 12370). The scope of the reac-

tion was reasonably well established.

Review: S. M. Weinreb Chem. Rev. 2006, 106, 

2531-2549.
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