

Significance: The [8]annulene 1, with one double bond in the trans configuration was synthesized in 20% yield on a 20 mmol scale. Compound $\mathbf{1}$ was shown to be kinetically stable but thermodynamically unstable, with the cis,cis isomer being thermodynamically favored. Compound $\mathbf{1}$ winds into a helical conformation in the solid state and both enantiomers of $\mathbf{1}$ are present within the unit cell of a crystal. The calculated strain energy for $\mathbf{1}$ is 18 $\mathrm{kcal} / \mathrm{mol}$, which allows it to participate in ringopening metathesis polymerization (ROMP), unlike its cis,cis isomer. Compound $\mathbf{1}$ forms living polymers when mixed with Grubbs' catalyst ($1^{\text {st }}$ gen.) and additional tricyclohexylphosphine ligand. In this fashion, regioregular poly(phenylene vinylene) (PPV) with all-ortho linkages was prepared and its hydrogenated derivate characterized by GPC and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy.

Comment: The authors reinvestigated chemistry pursued by Wittig et al. (Justus Liebigs Ann. Chem. 1955, 593, 127) and correctly identified a monomer that displays unique reactivity and yields interesting polymers. The regioselectivity of the ROMP imparts a well-defined secondary structure to $\mathbf{P} 1$ that can be exploited in sensing or molecular recognition schemes.

[^0]DOI: 10.1055/s-2008-1067050; Reg-No.: S05208SF

[^0]: synfacts Contributors: Timothy M. Swager, Trisha L. Andrew
 Synfacts 2008, 6, 0588-0588 Published online: 21.05.2008

