Fortschr Neurol Psychiatr 2008; 76: S68-S76
DOI: 10.1055/s-2008-1038141
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Neurobiologie stoffgebundener Abhängigkeitserkrankungen - Befunde bildgebender Verfahren[1, ] [2]

Neurobiology of Substance-Related Addiction - Findings of NeuroimagingT.  Kienast1 , J.  Wrase1 , A.  Heinz1
  • 1Klinik für Psychiatrie und Psychotherapie der Charité, CCM, Universitätsmedizin Berlin
Further Information

Publication History

Publication Date:
07 May 2008 (online)

Zusammenfassung

Der Einsatz bildgebender Verfahren ermöglicht ein Verständnis grundlegender Mechanismen der Abhängigkeitserkrankungen. Zu den Symptomen einer Abhängigkeitserkrankung gehören die Toleranzentwicklung gegenüber den Substanzwirkungen, Entzugssymptomatik, ein starkes Verlangen nach der Substanz, eine verminderte Kontrolle über den Substanzkonsums und die schädlichen Folgen des Konsums. Bildgebende Studien unterstützen die Hypothese, dass die Ausbildung von Toleranz als homöostatischer Anpassungsprozess an die Wirkung der Droge verstanden werden kann. Beim plötzlichen Entzug der Droge kommt es dann zu einem Verlust der Homöostase, der sich als Entzugssymptomatik zeigt. Die Sensitivierung ist ein der Toleranzentwicklung entgegengesetzter Prozess und beschreibt eine Zunahme der Wirksamkeit einer Substanz bei gleicher Dosierung. Befunde bildgebender Untersuchungen verweisen hier wie bei der Ausbildung des Drogenverlangens auf neuroadaptive Vorgänge im hirneigenen Belohnungssystem. Zu den schädlichen Folgen des Drogenkonsums zählen die neurotoxischen Wirkungen im ZNS. Neben den bildgebenden Befunden zu diesen Kardinalsymptomen der Abhängigkeitserkrankungen diskutieren wir auch bildgebende Studien zu Vulnerabilitätsfaktoren, die zur Entwicklung einer Abhängigkeitserkrankung disponieren.

Abstract

Neuroimaging provides insight into the main biological mechanisms underlying drug and alcohol dependence. Cardinal symptoms of drug dependence are the development of tolerance against drug effects, withdrawal symptoms, drug craving, reduced control over drug intake and harmful consequences of drug consumption. Brain imaging studies support the hypothesis that tolerance development can be understood as a neuroadaptive mechanism to ensure homeostasis during chronic drug intake. When drug consumption is suddenly interrupted during detoxification, the loss of homeostasis can manifest as a withdrawal syndrome. While tolerance development reduces the effects of chronic drug intake, sensitization is a neuroadaptive process that increases the effects of a drug dose. Brain imaging studies indicate that sensitisation and drug craving are associated with neuroadaptive processes in the brain reward system. Harmful consequences of drug intake include neurotoxic effects on the central nervous system. Besides discussing brain imaging studies on the neurobiological correlates of drug dependence, this review also presents studies on vulnerability factors that predispose individuals to excessive drug intake.

1 Mit Unterstürzung der DFG (He 2597/4-2 & 7-2)

2 Erstveröffentlichung im 31. Band „Fortschritt und Fortbildung in der Medizin” 2007/2008 der Bundesärztekammer (ISSN 0170-3331).

Literatur

  • 1 Volkow N D, Fowler J S, Wang G. The addicted human brain: insights from imaging studies.  J Clin Invest. 2003;  111 1444-1451
  • 2 Jacobsen L K, Giedd J N, Gottschalk C, Kosten T R, Krystal J H. Quantitative morphology of the caudate and putamen in patients with cocaine dependence.  Am J Psychiatry. 2001;  158 486-489
  • 3 Kienast T, Heinz A. Suchterkrankungen. In: Walter H (Hrsg). Funktionelle Bildgebung in Psychiatrie und Psychotherapie. Stuttgart: Schattauer Verlag 2004
  • 4 Koob G F, Le Moal M. Drug abuse: hedonic homeostatic dysregulation.  Science. 1997;  278 52-58
  • 5 Grant J E, Brewer J A, Potenza M N. The neurobiology of substance and behavioral addictions.  CNS Spectr. 2006;  11 924-930
  • 6 Heinz A, Batra A. Neurobiologie der Alkohol und Nikotinabhängigkeit. In: Brandt, Cohen, Helmchen, Schmidt (Hrsg). Psychiatrie, Neurologie, Klinische Psychologie- Stuttgart: Kohlhamer Verlag 2003
  • 7 Kienast T, Heinz A. Dopamine and the diseased brain.  CNS Neurol Disord Drug Targets. 2006;  5 09-131
  • 8 McClung C A. The molecular mechanisms of morphine addiction.  Rev Neurosci. 2006;  17 393-402
  • 9 Noble F, Cox B M. Differential desensitization of μ- and δ-opioid receptors in selected neural pathways following chronic morphine treatment.  Br J Pharmacol. 1996;  117 161-169
  • 10 Devine D P, Leone P, Pocock D, Wise R A. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies.  J Pharmacol Exp Ther. 1993;  266 1236-1246
  • 11 Wang G J, Volkow N D, Fowler J S, Logan J, Abumrad N N, Hitzemann R J, Pappas N S, Pascani K. Dopamine D2-receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal.  Neuropsychopharmacology. 1997;  16 174-182
  • 12 Diana M, Muntoni A L, Pistis M, Melis M, Gessa G L. Lasting reduction in mesolimbic dopamine neuronal activity after morphine withdrawal.  Eur J Neurosci. 1999;  11 1037-1041
  • 13 Dyck C H van, Rosen M I, Thomas H M, McMahon T J, Wallace E A, O'Connor P G, Sullivan M, Krystal J H, Hoffer P B, Woods S W. SPECT regional cerebral blood flow alterations in naltrexone precipitated withdrawal from buprenorphine.  Psychiatry Res. 1994;  55 181-191
  • 14 Krystal J H, Woods S W, Kosten T R, Rosen M I, Seibyl J P, Dyck C C van, Price L H, Zubal I G, Hoffer P B, Charney D S. Opiate dependence and withdrawal: preliminary assessment using single photon emission computerized tomography (SPECT).  Am J Drug Alcohol Abuse. 1995;  21 47-63
  • 15 Rose R J, Branchey M J, Buydens-Branchey L, Stapleton J M, Chasten K, Werrell A, Maayan M L. Cerebral perfusion in early and latae opiate withdrawal: a technetium-99m-HMPAO SPECT study.  Psychiatry Res. 1996;  67 39-47
  • 16 Volkow N D, Fowler J S, Wang G J, Hitzemann R, Logan J, Schlyer D J, Dewey S L, Wolf A P. Decreased dopamine D2-receptor availability is associated with reduced frontal metabolism in cocaine abusers.  Synapse. 1993;  14 169-177
  • 17 Williams J M, Galli A. The dopamine transporter: a vigilant border control for psychostimulant action.  Handb Exp Pharmacol. 2006;  175 215-232
  • 18 Howell L L, Hoffmann J M, Votaw J R, Landrum A M, Wilcox K M, Lindsey K P. Cocaine-induced brain activation determined by positron emission tomography neuroimaging in conscious rhesus monkeys.  Psychopharmacology. 2003;  159 154-160
  • 19 Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Takei N, Mori N. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET.  Am J Psychiatry. 2001;  158 1206-1214
  • 20 Paulus M P, Hozack N E, Zauscher B E, Frank L, Brown G G, Braff D L, Schuckit M A. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects.  Neuropsychopharmacology. 2002;  26 53-63
  • 21 Chang L, Grob C S, Ernst T, Itti L, Mishkin F S, Jose-Melchor R, Poland R E. Effect of ecstasy [3,4-methylenedioxymethamphetamine (MDMA)] on cerebral blood flow: a co-registered SPECT and MRI study.  Psychiatry Res. 2000;  98 15-28
  • 22 Hu Y, Lund I V, Gravielle M C, Farb D H, Brooks-Kayal A R, Russek S J. Surface expression of GABA (A) receptors is transcriptionally controlled by the interplay of CREB and its binding partner ICER. J Biol Chem 2008 Epub ahead of print
  • 23 Carpenter-Hyland E P, Chandler L J. daptive plasticity of NMDA receptors and dendritic spines: implications for enhanced vulnerability of the adolescent brain to alcohol addiction.  Pharmacol Biochem Behav. 2007;  86 200-208
  • 24 Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser S M, Flor H, Braus D F, Buchholz H G, Gründer G, Schreckenberger M, Smolka M N, Roesch F, Mann K, Bartenstein P. Correlation between dopamine D2-receptors in the ventral striatum and central processing of alcohol cues and craving.  Am J Psychiatry. 2004;  161 1783-1789
  • 25 Heinz A, Dufeu P, Kuhn S, Dettling M, Graf K, Kurten I, Rommelspacher H, Schmidt L G. Psychopathological and behavioral correlates of dopaminergic sensitivity in alcohol-dependent patients.  Arch Gen Psychiatry. 1996;  53 123-1128
  • 26 Heinz A, Goldman D. Genotype effects on neurodegeneration and neuroadaptation in monoaminergic neurotransmitter systems.  Neurochem Int. 2000;  37 425-432
  • 27 Budney A J, Hughes J R, Moore B A, Novy P L. Marijuana abstinence effects in marijuana smokers maintained in their home environment.  Arch Gen Psychiatry. 2001;  58 917-924
  • 28 Iversen L. Cannabis and the brain.  Brain. 2003;  126 1252-1270
  • 29 Dagher A, Bleicher C, Aston J A, Gunn R N, Clarke P B. Reduces dopamine D1-receptor binding in the ventral striatum of cigarette smokers.  Synapse. 2001;  42 48-53
  • 30 Fowler J S, Wang G J, Volkow N D, Franceschi D, Logan J, MacGregor R R, Garza V. Smoking a single cigarette does not produce a measurable reduction in brain MAO B in non smokers.  Nicotine & Tobacco Research. 1999;  1 325-329
  • 31 Stead L, Perera R, Bullen C, Mant D, Lancaster T. Nicotine replacement therapy for smoking cessation.  Cochrane Database Syst Rev. 2008;  1 CD000146
  • 32 Jorenby D E, Leischow S J, Nides M A, Rennard S I, Johnston J A, Hughes A R, Smith S S, Muramoto M L, Daughton D M, Doan K, Fiore M C, Baker T. A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation.  N Engl J Med. 1999;  340 685-689
  • 33 Robinson T E, Berridge K C. Addiction.  Annu Rev Psychol. 2003;  54 25-53
  • 34 Tiffany S T. Cognitive concepts of craving.  Alcohol Res Health. 1999;  23 215-224
  • 35 Breiter H C, Rauch S L, Kwong K K, Baker J R, Weisskoff R M, Kennedy D N, Kendrick A D, Davis T L, Jiang A, Cohen M S, Stern C E, Belliveau J W, Baer L, O'Sullivan R L, Savage C R, Jenike M A, Rosen B R. Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder.  Arch Gen Psychiatry. 1996;  53 595-606
  • 36 Weiss F. Neurobiology of craving, conditioned reward and relapse.  Curr Opin Pharmacol. 2005;  5 9-19
  • 37 Weinstein A, Feldtkeller B, Malizia A, Wilson S, Bailey J, Nutt D J. Integrating the cognitive and physiological aspects of craving.  J Psychopharmacol. 1998;  12 31-38
  • 38 Wexler B E, Gottschalk C H, Fulbright R K, Prohovnik I, Lacadie C M, Rounsaville B J, Gore J C. Functional magnetic resonance imaging of cocaine craving.  Am J Psychiatry. 2001;  158 86-95
  • 39 Childress A R, Mozley P D, McElgin W, Fitzgerald J, Reivich M, O'Brien C P. Limbic activation during cue-induced cocaine craving.  Am J Psychiatry. 1999;  56 11-18
  • 40 Grant S, London E D, Newlin D B, Villemagne V L, Liu X, Contoreggi C, Phillips R L, Kimes A S, Margolin A. Activation of memory circuits during cue-elicited cocaine craving.  Proc Natl Acad Sci USA. 1996;  93 12 040-12 045
  • 41 Maas L C, Lukas S E, Kaufman M J, Weiss R D, Daniels S L, Rogers V W, Kukes T J, Renshaw P F. Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving.  Am J Psychiatry. 1998;  155 124-126
  • 42 London E D, Ernst M, Grant S, Bonson K, Weinstein A. Orbitofrontal cortex and human drug abuse: functional imaging.  Cereb Cortex. 2000;  10 334-342
  • 43 Lingford-Hughes A R, Davies S J, McIver S, Williams T M, Daglish M R, Nutt D J. Addiction.  Br Med Bull. 2003;  65 209-222
  • 44 Boettiger C A, Mitchell J M, Tavares V C, Robertson M, Joslyn G, D'Esposito M, Fields H L. Immediate reward bias in humans: fronto-parietal networks and a role for the catechol-O-methyltransferase 158(Val/Val) genotype.  J Neurosci. 2007;  27 14 383-14 391
  • 45 Garavan H, Pankiewicz J, Bloom A, Cho J K, Sperry L, Ross T J, Salmeron B J, Risinger R, Kelley D, Stein E A. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli.  Am J Psychiatry. 2000;  157 1789-1798
  • 46 Schneider F, Habel U, Wagner M, Franke P, Salloum J B, Shah N J, Toni I, Sulzbach C, Honig K, Maier W, Gaebel W, Zilles K. Subcortical correlates of craving in recently abstinent alcoholic patients.  Am J Psychiatry. 2001;  158 1075-1083
  • 47 Grüsser S M, Heinz A, Flor H. Standardized stimuli to assess drug craving and drug memory in addicts.  J Neural Transm. 2000;  107 715-720
  • 48 George M S, Anton R F, Bloomer C, Teneback C, Drobes D J, Lorberbaum J P, Nahas Z, Vincent D J. Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues.  Arch Gen Psychiatry. 2001;  58 345-352
  • 49 Braus D F, Wrase J, Grusser S, Hermann D, Ruf M, Flor H, Mann K, Heinz A. Alcohol-associated stimuli activate the ventral striatum in abstinent alcoholics.  J Neural Transm. 2001;  108 887-894
  • 50 Myrick H, Anton R F, Li X, Henderson S, Drobes D, Voronin K, George M S. Differential brain activity in alcoholics and social drinkers to alcohol cues: relationship to craving.  Neuropsychopharmacology. 2004;  29 393-402
  • 51 Wrase J, Schlagenhauf F, Kienast T, Wüstenberg T, Bermpohl F, Kahnt T, Beck A, Ströhle A, Juckel G, Knutson B, Heinz A. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics.  Neuroimage. 2007;  35 787-794
  • 52 Grusser S M, Wrase J, Klein S, Hermann D, Smolka S M, Ruf M, Weber-Fahr W, Flor H, Mann K, Braus D F, Heinz A. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics.  Psychopharmacology. 20;  175 296-302
  • 53 Garavan H, Ross T J, Stein E A. Right hemispheric dominance of inhibitory control: an event-related functional MRI study.  Proc Natl Acad Sci USA. 1999;  96 8301-8306
  • 54 Royall D R, Lauterbach E C, Cummings J L, Reeve A, Rummans T A, Kaufer D I, LaFrance Jr W C, Coffey C E. Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association.  J Neuropsychiatry Clin Neurosci. 2002;  14 377-405
  • 55 Volkow N D, Fowler J S. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex.  Cereb Cortex. 2000;  10 318-325
  • 56 Goldstein R Z, Volkow N D. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex.  Am J Psychiatry. 2002;  159 1642-1652
  • 57 Mansvelder H D, Aerde K I van, Couey J J, Brussaard A B. Nicotinic modulation of neuronal networks: from receptors to cognition.  Psychopharmacology (Berl). 2006;  184 292-305
  • 58 Ernst M, Matochik J A, Heishman S J, Horn J D van, Jons P H, Henningfield J E, London E D. Effect of nicotine on brain activation during performance of a working memory task.  Proc Natl Acad Sci USA. 2001;  98 4728-4733
  • 59 Heinz A, Higley J D, Gorey J G, Saunders R C, Jones D W, Hommer D, Zajicek K, Suomi S J, Lesch K P, Weinberger D R, Linnoila M. In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates.  Am J Psychiatry. 1998;  155 1023-1028
  • 60 Izquierdo A, Newman T K, Higley J D, Murray E A. Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys.  Proc Natl Acad Sci U S A. 2007;  104 14 128-14 133
  • 61 Heinz A, Jones D W, Gorey J G, Bennet A, Suomi S J, Weinberger D R, Higley J D. Serotonin transporter availability correlates with alcohol intake in non-human primates.  Mol Psychiatry. 2003;  8 231-234
  • 62 Schuckit M A, Smith T L. An 8-year follow-up of 4 sons of alcoholic and control subjects.  Arch Gen Psychiatry. 1996;  53 202-221
  • 63 Schuckit M A. New findings in the genetics of alcoholism.  JAMA. 1999;  281 1875-1876
  • 64 Volkow N D, Wang G J, Fowler J S, Logan J, Gatley S J, Gifford A, Hitzemann R, Ding Y S, Pappas N. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2-receptor levels.  Am J Psychiatry. 1999;  156 1440-1443
  • 65 Papp M, Klimek V, Willner P. Parallel changes in dopamine D2-receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine.  Psychopharmacology. 1994;  115 441-446
  • 66 Martin M, Hurley R A, Taber K H. Is opiate addiction associated with longstanding neurobiological changes?.  J Neuropsychiatry Clin Neurosci. 2007;  19 242-248
  • 67 Gacouin A, Lavoue S, Signouret T, Person A, Dinard M D, Shpak N, Thomas R. Reversible spongiform leucoencephalopathy after inhalation of heated heroin.  Intensive Care Med. 2003;  29 1012-1015
  • 68 Christensen J D, Kaufman M J, Levin J M, Mendelson J H, Holman B L, Cohen B M, Renshaw P F. Abnormal cerebral metabolism in polydrug abusers during early withdrawal: a 31P MR spectroscopy study.  Magn Reson Med. 1996;  35 658-663
  • 69 Silveri M M, Pollack M H, Diaz C I, Nassar L E, Mendelson J H, Yurgelun-Todd D A, Renshaw P F, Kaufman M J. Cerebral phosphorus metabolite and transverse relaxation time abnormalities in heroin-dependent subjects at onset of methadone maintenance treatment.  Psychiatry Res. 2004;  131 217-226
  • 70 Franklin T R, Acton P D, Maldjian J A, Gray J D, Croft J R, Dackis C A, O'Brien C P, Childress A R. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients.  Biol Psychiatry. 2002;  51 34-142
  • 71 Lyons D, Friedman D P, Nader M A, Porrino L J. Cocaine alters cerebral metabolism within the ventral striatum and limbic cortex of monkeys.  J Neurosci. 1996;  16 1230-1238
  • 72 Jacobsen L K, Giedd J N, Gottschalk C, Kosten T R, Krystal J H. Quantitative morphology of the caudate and putamen in patients with cocaine dependence.  Am J Psychiatry. 2001;  158 486-489
  • 73 Gouzoulis-Mayfrank E, Daumann J. Neurotoxicity of methylenedioxyamphetamines (MDMA; ecstasy) in humans: how strong is the evidence for persistent brain damage?.  Addiction. 2006;  101 348-361
  • 74 Martinsson L, Hardemark H, Eksborg S. Amphetamines for improving recovery after stroke.  Cochrane Database Syst Rev. 2007;  1 CD002090
  • 75 Hatzidimitriou G, McCann D U, Ricuarte G A. Altered serotonin innervation patterns in the forebrain of monkeys treated with 3,4-methylendioxymethamphetamine seven years previously: factors influencing abnormal recovery.  J Neurosci. 1999;  19 5096-5107
  • 76 Ricaurte G A, Yuan J, Hatzidimitriou G, Cord B J, McCann D U. Retraction.  Science. 2003;  301 1479
  • 77 Heinz A, Jones D W. Serotonin transporters in ecstasy users.  Br J Psychiatry. 2000;  176 193
  • 78 Thomasius R, Petersen K, Buchert R, Andresen B, Zapletalova P, Wartberg L, Nebeling B, Schmoldt A. Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users.  Psychopharmacology (Berl). 2003;  167 85-96
  • 79 Buchert R, Obrocki J, Thomasius R, Vaterlein O, Petersen K, Jenicke L, Bohuslavizki K H, Clausen M. Long-term effects of “ecstasy” use on serotonin transporters of the brain investigated by PET.  J Nucl Med. 2003;  44 375-384
  • 80 Mann K, Agartz I, Harper C, Shoaf S, Rawlings R R, Momenan R, Hommer D W, Pfefferbaum A, Sullivan E V, Anton R F, Drobes D J, George M S, Bares R, Machulla H J, Mundle G, Reimold M, Heinz A. Neuroimaging in alcoholism: ethanol and brain damage.  Alcohol Clin Exp Res. 2001;  25 (5 Suppl ISBRA) 104S-109S
  • 81 Pfefferbaum A, Sullivan E V, Mathalon D H, Shear P K, Rosenbloom M J, Lim K O. Longitudinal changes in magnetic resonance imaging brain volumes in abstinent and relapsed alcoholics.  Alcohol Clin Exp Res. 1995;  19 1177-1191
  • 82 Sullivan E V, Marsh L, Mathalon D H, Lim K O, Pfefferbaum A. Relationship between alcohol withdrawal seizures and temporal lobe white matter volume deficits.  Alcohol Clin Exp Res. 1996;  20 348-354
  • 83 Agartz I, Momenan R, Rawlings R R, Kerich M J, Hommer D W. Hippocampal volume in patients with alcohol dependence.  Arch Gen Psychiatry. 1999;  56 356-363
  • 84 Hommer D, Momenan R, Rawlings R, Ragan P, Williams W, Rio D, Eckardt M. Decreased corpus callosum size among alcoholic women.  Arch Neurol. 1996;  53 359-363
  • 85 Bendszus M, Weijers H G, Wiesbeck G, Warmuth-Metz M, Bartsch A J, Engels S, Boning J, Solymosi L. Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data.  Am J Neuroradiol. 2001;  22 926-1932
  • 86 Heinz A, Ragan P, Jones D W, Hommer D, Williams W, Knable M B, Gorey J G, Doty L, Geyer C, Lee K S, Coppola R, Weinberger D R, Linnoila M. Reduced central serotonin transporters in alcoholism.  Am J Psychiatry. 1998;  155 1544-1549
  • 87 Heinz A, Jones D W, Bissette G, Hommer D, Ragan P, Knable M, Wellek S, Linnoila M, Weinberger D R. Relationship between cortisol and serotonin metabolites and transporters in alcoholism [correction of alcolholism].  Pharmacopsychiatry. 2002;  35 127-134
  • 88 Sullivan E V, Lane B, Deshmukh A, Rosenbloom M J, Desmond J E, Lim K O, Pfefferbaum A. In vivo mammillary body volume deficits in amnesic and nonamnesic alcoholics.  Alcohol Clin Exp Res. 1999;  23 1629-1636
  • 89 Landfield P W, Cadwallader L B, Vinsant S. Quantitative changes in hippocampal structure following long-term exposure to delta 9-tetrahydrocannabinol: Possible mediation by glucocorticoid systems.  Brain res. 1988;  443 47-62
  • 90 Heath R G, Fitzjarrell A T, Fontana C J, Garey R E. Cannabis sativa: effects on brain function and ultrastructure in rhesus monkeys.  Biol Psychiatry. 1980;  15 657-690
  • 91 Chan G C, Hinds T R, Impey S, Storm D R. Hippocampal neurotoxicity of Delta9-tetrahydrocannabinol.  J Neurosci. 1998;  18 5322-5332
  • 92 Fletcher J M, Page J B, Francis D J, Copeland K, Naus M J, Davis C M, Morris R, Krauskopf D, Satz P. Cognitive correlates of long-term cannabis use in Costa Rican men.  Arch Gen Psychiatry. 1996;  53 1051-1057
  • 93 Sarne Y, Mechoulam R. Cannabinoids: between neuroprotection and neurotoxicity.  Curr Drug Targets CNS Neurol Disord. 2005;  4 677-684

1 Mit Unterstürzung der DFG (He 2597/4-2 & 7-2)

2 Erstveröffentlichung im 31. Band „Fortschritt und Fortbildung in der Medizin” 2007/2008 der Bundesärztekammer (ISSN 0170-3331).

Prof. Dr. med. Andreas Heinz

Klinik für Psychiatrie und Psychotherapie, Campus Charité Mitte, Charité - Universitätsmedizin Berlin

Charitéplatz 1

10117 Berlin

Email: andreas.heinz@charite.de

    >