Minim Invasive Neurosurg 2007; 50(5): 273-280
DOI: 10.1055/s-2007-991143
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Surgical Target Selection in Cerebral Glioma Surgery: Linking Methionine (MET) PET Image Fusion and Neuronavigation

K. Roessler 1 , 6 , B. Gatterbauer 1 , A. Becherer 2 , 6 , M. Paul 2 , K. Kletter 2 , D. Prayer 4 , R. Hoeftberger 5 , J. Hainfellner 5 , S. Asenbaum 2 , 3 , E. Knosp 1
  • 1Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
  • 2Department of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
  • 3Department of Neurology, Medical University of Vienna, Vienna, Austria
  • 4Department of Radiology, Medical University of Vienna, Vienna, Austria
  • 5Neurological Institute (Neuropathology), Medical University of Vienna, Vienna, Austria
  • 6Academic Teaching Hospital Feldkirch, Feldkirch, Austria
Further Information

Publication History

Publication Date:
05 December 2007 (online)

Abstract

Objective: The objective of this study was to investigate the histological correlate of 11C-methionine (MET) PET uptake of brain gliomas by image fusion for navigated surgery.

Methods: Twenty-seven patients (18 male, 9 female; mean age 42 years; range 11-77 years; 8 low-grade and 11 high-grade astrocytomas or mixed gliomas, 8 oligodendrogliomas) underwent MET PET studies preoperatively.

Results: MET PET tumor uptake was detected in 26 of 27 patients (96.3%). The quantitative MET tumor standardized uptake value (SUV) ratio was significantly higher in malignant gliomas and oligodendrogliomas than in low-grade gliomas (2.76/2.62 vs. 1.67, p=0.03). Generally, qualitative visual grading of MET uptake revealed 2 main patterns: focal MET uptake in 12 and uniform global MET uptake in 11 patients. Focal uptake corresponded to malignant glioma histology in 66.7%, and uniform global uptake to oligodendroglial histology in 72.7%. In oligodendrogliomas, global MET uptake constituted 81.5% (range 53.8-135%) of the MRI T1 tumor volume on average and was limited to the MRI FLAIR tumor volume in 86% (7/8) of patients. Tissue samples of focal MET uptake areas correlated with histological anaplasia in 66.6% (8/12 glioma patients), although 62.5% (5/8 patients) lacked MRI contrast enhancement.

Conclusion: MET PET image fusion may facilitate the targeting of anaplastic foci in homogeneous MRI non-enhancing gliomas for biopsy, may identify oligodendroglial histology preoperatively as well as characterize biologically active tumor volumes within MRI T1/FLAIR tumor areas of candidate patients for resection.

References

  • 1 Braun V, Dempf S, Tomczak R, Wunderlich A, Weller R, Richter HP. Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note.  Neurosurgery. 2001;  48 1178-1181
  • 2 Sabbah P, Foehrenbach H, Dutertre G, Nioche C, Dreuille O De, Bellegou N, Mangin JF, Leveque C, Faillot T, Gaillard JF, Desgeorges M, Cordoliani YS. Multimodal anatomic, functional, and metabolic brain imaging for tumor resection.  Clin Imaging. 2002;  26 6-12
  • 3 Levivier M, Wikler Jr D, Massager N, David P, Devriendt D, Lorenzoni J, Pirotte B, Desmendt F, Simon Jr S, Goldman S, Houtte P Van, Brotchi J. The integration of metabolic imaging in stereotactic procedures including radiosurgery: a review.  J Neurosurg. 2002;  97 ((5 Suppl)) 542-550
  • 4 Roessler K, Donat M, Lanzenberger R, Novak K, Geissler A, Gartus A, Tahamtan AR, Milakara D, Czech T, Barth M, Knosp E, Beisteiner R. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome.  J Neurol Neurosurg Psychiatry. 2005;  76 1152-1157
  • 5 Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB. Stereotactic histologic correlations of computed tomography- and mag-netic resonance imaging-defined abnormalities in patients with glial neoplasms.  Mayo Clin Proc. 1987;  62 450-459
  • 6 Pirzkall A, MacKnight TR, Graves EE, Carol MP, Sneed PK, Wara WW, Nelson SJ, Verhey LJ, Larson DA. MR-spectroscopy guided target delineation for high-grade gliomas.  Int J Radiat Oncol Biol Phys. 2001;  50 915-928
  • 7 Kameyama M, Shirane R, Itoh J, Sato K, Katakura R, Yoshimoto T, Hataza J, Itoh M, Ido T. The accumulation of 11C-methionine in cerebral glioma patients studied with PET.  Acta Neurochir (Wien). 1990;  104 8-12
  • 8 Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, Luxen A, Reznik M. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine.  J Nucl Med. 1998;  39 778-785
  • 9 Witte O De, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, Salmon I, Brotchi J, Goldman S. Positron emission tomography with injection of methionine as a prognostic factor in glioma.  J Neurosurg. 2001;  95 746-750
  • 10 Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Langstrom B, Bolander H, Bergstrom M, Smits A. Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas.  Cancer. 2001;  92 1541-1549
  • 11 Ribom D, Smits A. Baseline 11C-methionine PET reflects the natural course of grade 2 oligodendrogliomas.  Neurol Res. 2005;  27 516-521
  • 12 Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, Senda M, Ishii K, Hirakawa K, Ohno K. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma.  J Neurosurg. 2005;  103 498-507
  • 13 Braun V, Dempf S, Weller R, Reske SN, Schachenmayr W, Richter HP. Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data - results of a pilot study in 32 surgical cases.  Acta Neurochir (Wien). 2002;  144 777-782
  • 14 Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, Jeong JM, Lee DS, Jung HW, Lee MC. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET.  Eur J Nucl Med Mol Imaging. 2002;  29 176-182
  • 15 Becherer A, Karanikas G, Szabo M, Zettinig G, Asenbaum S, Marosi C, Henk C, Wunderbaldinger P, Czech T, Wadsak W, Kletter K. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine.  Eur J Nucl Med Mol Imaging. 2003;  30 1561-1567
  • 16 Herholz K, Holzer T, Bauer B, Schroder R, Voges J, Ernestus RI, Mendoza G, Weber-Luxenburger G, Lottgen J, Thiel A, Wienhard K, Heiss WD. 11C-methionine PET for differential diagnosis of low-grade gliomas.  Neurology. 1998;  50 1316-1322
  • 17 Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope.  J Neurosurg. 1986;  65 545-549
  • 18 Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Tatakura K. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery.  Surg Neurol. 1987;  27 543-547
  • 19 Schmitz F, Plenevaux A, Del Fiore G. et al . Fast routine production of l-[11C-methyl] methionine with Al2O3/KF.  Appl Radiat Isot. 1995;  46 893-897
  • 20 Roessler K, Ungersboeck K, Dietrich W, Aichholzer M, Hittmeir K, Matula C, Czech T, Koos WT. Frameless stereotactic guided neurosurgery: Clinical experiences with an infrared based pointer device navigation system.  Acta Neurochir. 1997;  139 551-559
  • 21 Roessler K, Ungersboeck K, Aichholzer M, Dietrich W, Czech T, Heimberger K, Matula C, Koos WT. Image guided neurosurgery comparing a pointer device system with a navigating microscope. A retrospective analysis of 208 cases.  Minim Invas Neurosurg. 1997;  41 53-57
  • 22 Wolfsberger S, Rossler K, Regatschnig R, Ungersbock K. Anatomical landmarks for image registration in frameless stereotactic neuronavigation.  Neurosurg Rev. 2002;  25 68-72
  • 23 Ammirati M, Vick N, Liao YL, Ciric I, Mikhael M. Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas.  Neurosurgery. 1987;  21 201-206
  • 24 Berger MS, Deliganis AV, Dobbins J, Keles GE. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas.  Cancer. 1994;  74 1784-1791
  • 25 Piepmeier J, Christopher S, Spencer D, Byrne T, Kim J, Knisel JP, Lacy J, Tsukerman L, Makuch R. Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas.  Neurosurgery. 1996;  38 872-878
  • 26 Scott JN, Rewcastle NB, Brasher PM, Fulton D, Mac Kinnon JA, Hamilton M, Cairncross JG, Forsyth P. Which glioblastoma multiforme patient will become a long-term survivor? A population-based study.  Ann Neurol. 1999;  46 183-188
  • 27 Keles GE, Lamborn KR, Berger MS. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome.  J Neurosurg. 2001;  95 735-745 , [Review]
  • 28 Keles GE, Lamborn KR, Chang SM, Prados MD, Berger MS. Volume of residual disease as a predictor of outcome in adult patients with recurrent supratentorial glioblastomas multiforme who are undergoing chemotherapy.  J Neurosurg. 2004;  100 41-46
  • 29 Kurimoto M, Hayashi N, Kamiyama H, Nagai S, Shibata T, Asahi T, Matsumara N, Hirashima Y, Endo S. Impact of neuronavigation and image-guided extensive resection for adult patients with supratentorial malignant astrocytomas: a single-institution retrospective study.  Minim Invas Neurosurg. 2004;  47 278-283
  • 30 Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, Klein JC, Herholz K, Heiss WD. Delineation of brain tumor extent with [11C]-L-methionine positron emission tomography: local comparison with stereotactic histopathology.  Clin Cancer Res. 2004;  10 7163-7170
  • 31 Miwa K, Shinoda J, Yano H, Okumura A, Iwama T, Nakashima T, Sakai N. Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study.  J Neurol Neurosurg Psychiatr. 2004;  75 1457-1462
  • 32 Pirotte B, Goldman S, Dewitte O, Massager N, Wikler D, Lefranc F, Ben Taib NO, Rorive S, David P, Brotchi J, Levivier M. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures.  J Neurosurg. 2006;  104 238-253
  • 33 Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandersteene A, Salmon I, Brotchi J, Levivier M. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas.  J Nucl Med. 2004;  45 1293-1298
  • 34 Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A. [11C]-L-methionine uptake in gliomas.  Neurosurgery. 1989;  25 720-728
  • 35 Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, Shimosegawa E, Ito H, Hatazawa J, Okudera T. et al . Cerebral glioma: evaluation with methionine PET.  Radiology. 1993;  186 45-53
  • 36 Sasaki M, Kuwabara Y, Yoshida T, Nakagawa M, Koga H, Hayashi K, Kaneko K, Chen T, Ichiya Y, Masuda K. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours.  Eur J Nucl Med. 1998;  25 1261-1269
  • 37 Langen KJ, Muhlensiepen H, Holschbach M, Hauzel H, Jansen P, Coenen HH. Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human gliomas cell line: comparison with [3H]methyl]-L-methionine.  J Nucl Med. 2000;  41 1250-1255
  • 38 Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noel MH, Creveuil C, Courtheoux P, Houtteville JP. The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine.  Neurosurgery. 1997;  40 276-287
  • 39 Grosu AL, Weber WA, Riedel E, Jeremic E, Nieder C, Franz M, Gumprecht H, Jaeger R, Schwaiger M, Molls M. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy.  Int J Radiat Oncol Biol Phys. 2005;  63 64-74

Correspondence

K. RoesslerMD 

Department of Neurosurgery

Academic Teaching Hospital Feldkirch

Carinagasse 47

6807 Feldkirch

Austria

Phone: +43/5522/303 19 00

Fax: +43/5522/303 75 15

Email: Karl.Roessler@lkhf.at

    >