Handchir Mikrochir Plast Chir 2008; 40(1): 66-73
DOI: 10.1055/s-2007-989425
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

ARMOR: Elektromechanischer Roboter für das Bewegungstraining der oberen Extremität nach Schlaganfall. Prospektive randomisierte kontrollierte Pilotstudie

ARMOR: An Electromechanical Robot for Upper Limb Training Following Stroke. A Prospective Randomised Controlled Pilot StudyA. Mayr1 , M. Kofler1 , L. Saltuari1
  • 1Abteilung für Neurologische Akutbehandlung (Vorstand: ao. Univ.-Prof. Dr. L Saltuari), Landeskrankenhaus Hochzirl, Zirl, Österreich
Further Information

Publication History

eingereicht 27.2.2007

akzeptiert 31.8.2007

Publication Date:
06 March 2008 (online)

Zusammenfassung

Fragestellung: Die funktionelle Verbesserung der paretischen oberen Extremität nach Schlaganfall bleibt durch die komplexe Klinik einer Schädigung des ersten Motoneurons eine Herausforderung in der Neurorehabilitation. Robotergestütztes Training hat sich beim Wiedererlernen des Gehens als positive Intervention erwiesen. Um zu prüfen, ob ähnliche Resultate auch für die obere Extremität zu erzielen sind, wurde ein elektromechanischer Roboter (ARMOR) entwickelt, der komplexe Bewegungsmuster auszuführen hilft und der zu einer funktionellen Verbesserung von Schlaganfallpatienten beitragen soll. Material und Methode: Acht Patienten nach einem primären Schlaganfall unterschiedlicher Ätiologie nahmen an der Studie mit einem AB‐BA Cross-Over-Design teil. Dabei wurde das ARMOR-Training mit einer EMG-getriggerten neuromuskulären Elektrostimulation (EMG-NMES) verglichen. Chedoke-McMaster Stroke Assessment-Bogen, modifizierte Ashworth-Skala, Messung der Gelenkbeweglichkeit (ROM) nach der Neutral-Null-Methode, Dynamometrie und Functional-Dexterity-Test dienten zur Evaluierung der Patienten. Ergebnisse: Das ARMOR-Training manifestierte sich in einer stärkeren Verbesserung von Muskeltonus (p = 0,004), Gelenkbeweglichkeit (p = 0,005) und Feinmotorik, aber in einer geringeren Verbesserung der Kraft im Vergleich zur EMG-NMES. Der Chedoke-McMaster Stroke Assessment-Bogen zeigte durch das ARMOR-Training eine Verbesserung von mindestens einem Punkt im Bereich Schulterschmerz, Arm- und Handaktivität bei gleichbleibenden Werten unter EMG-NMES. Die Verbesserungen unter ARMOR-Training waren bei früherer Anwendung (A1) ausgeprägter als bei späterer Anwendung (A2). Schlussfolgerung: Die Ergebnisse der vorliegenden Studie zeigen den positiven Effekt des automatisierten Trainings mit einem neuen elektromechanischen Armroboter und dessen klinische Anwendbarkeit zur funktionellen Verbesserung der paretischen oberen Extremität von Schlaganfallpatienten.

Abstract

Purpose: Due to the complexity of the upper motor neuron syndrome, functional improvement in the paretic upper limb after stroke continues to be a challenge in neurorehabilitation. Robot-assisted training has been shown to be useful in relearning gait. In order to achieve similar results in the upper limb, an electromechanical arm robot (ARMOR), capable of moving all joints through complex patterns, has been developed. Material and Method: Eight patients following stroke of different etiologies were included in a clinical AB‐BA cross-over study comparing ARMOR training with EMG-triggered neuromuscular electrical stimulation (EMG-NMES). Chedoke-McMaster Stroke Assessment, modified Ashworth Scale, goniometry (Neutral-0-Method), dynamometry and Functional Dexterity Test served as outcome measures. Results: ARMOR training resulted in more improvement of muscle tone (p = 0.004), range of movement (ROM) (p = 0.005) and dexterity, but less improvement of strength, than EMG-NMES. Chedoke-McMaster Stroke Assessment showed improvement of at least one point in shoulder pain and arm and hand activity during ARMOR training, while these values did not change with EMG‐NMS. Better results of ARMOR training were achieved in the earlier phase (A1) than in the later phase (A2). Conclusion: This study demonstrates the positive effect of automatised training with a new electromechanical arm robot (ARMOR), and documents its clinical applicability in the rehabilitation of the paretic upper extremity in stroke patients.

Literatur

  • 1 Aaron D H, Jansen C W. Development of the Functional Dexterity Test (FDT): construction, validity, reliability, and normative data.  J Hand Ther. 2003;  16 12-21
  • 2 Bohannon R W. Hand-held dynamometry: factors influencing reliability and validity.  Clin Rehabil. 1997;  11 263-264
  • 3 Bohannon R W, Smith M B. Interrater reliability of a modified Ashworth scale of muscle spasticity.  Phys Ther. 1987;  67 206-207
  • 4 Brainin M, Bornstein N, Boysen G, Demarin V. Acute neurological stroke care in Europe: results of the European Stroke Care Inventory.  Eur J Neurol. 2000;  7 5-10
  • 5 Butefisch C, Hummelsheim H, Denzler P, Mauritz K H. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand.  J Neurol Sci. 1995;  130 59-68
  • 6 Chae J, Bethoux F, Bohine T, Dobos L, Davis T, Friedl A. Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia.  Stroke. 1998;  29 975-979
  • 7 Cozean C D, Pease W S, Hubbell S L. Biofeedback and functional electric stimulation in stroke rehabilitation.  Arch Phys Med Rehabil. 1988;  69 401-405
  • 8 Cramer S C. Changes in motor system function and recovery after stroke.  Restor Neurol Neurosci. 2004;  22 231-238
  • 9 Delitto A, Snyder-Mackler L, Robinson A J. Electrical stimulation of muscle: techniques and applications. Robinson AJ, Snyder-Mackler L Clinical Electrophysiology. Electrotherapy and Electrophysiologic Testing. Baltimore, Hong Kong, London, Munich, Philadelphia, Syndey, Tokyo; Williams & Wilkins 1995: 122-153
  • 10 Dobkin B H. Strategies for stroke rehabilitation.  Lancet Neurol. 2004;  3 528-536
  • 11 Golaszewski S M, Siedentopf C M, Baldauf E, Koppelstaetter F, Eisner W, Unterrainer J, Guendisch G M, Mottaghy F M, Felber S R. Functional magnetic resonance imaging of the human sensorimotor cortex using a novel vibrotactile stimulator.  Neuroimage. 2002;  17 421-430
  • 12 Golaszewski S M, Siedentopf C M, Koppelstaetter F, Fend M, Ischebeck A, Gonzalez-Felipe V, Haala I, Struhal W, Mottaghy F M, Gallasch E, Felber S R, Gerstenbrand F. Human brain structures related to plantar vibrotactile stimulation: a functional magnetic resonance imaging study.  Neuroimage. 2006;  29 923-929
  • 13 Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van H S, Sanford J, Barreca S, Vanspall B, Plews N. Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment.  Stroke. 1993;  24 58-63
  • 14 Gresham G E, Alexander D, Bishop D S, Giuliani C, Goldberg G, Holland A, Kelly-Hayes M, Linn R T, Roth E J, Stason W B, Trombly C A. American Heart Association Prevention Conference. IV. Prevention and Rehabilitation of Stroke. Rehabilitation.  Stroke. 1997;  28 1522-1526
  • 15 Hakkennes S, Keating J L. Constraint-induced movement therapy following stroke: a systematic review of randomised controlled trials.  Aust J Physiother. 2005;  51 221-231
  • 16 Hogan N, Krebs H I. Interactive robots for neuro-rehabilitation.  Restor Neurol Neurosci. 2004;  22 349-358
  • 17 Kabat H. Studies of neuromuscular dysfunction, X: Treatment of chronic multiple sclerosis with neostigmine and intensive muscle re-education.  Perm Found Med Bull. 1947;  5 1-13
  • 18 Kwakkel G, van Peppen R, Wagenaar R C, Wood D S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P. Effects of augmented exercise therapy time after stroke: a meta-analysis.  Stroke. 2004;  35 2529-2539
  • 19 Liepert J, Hamzei F, Weiller C. Lesion-induced and training-induced brain reorganization.  Restor Neurol Neurosci. 2004;  22 269-277
  • 20 Moseley A M, Stark A, Cameron I D, Pollock A. Treadmill training and body weight support for walking after stroke.  Cochrane Database Syst Rev. 2005;  DOI: 10.1002/14651858.CD002840.pub2
  • 21 Nuyens G E, De Weerdt W J, Spaepen Jr A J, Kiekens C, Feys H M. Reduction of spastic hypertonia during repeated passive knee movements in stroke patients.  Arch Phys Med Rehabil. 2002;  83 930-935
  • 22 Pandyan A D, Granat M H, Stott D J. Effects of electrical stimulation on flexion contractures in the hemiplegic wrist.  Clin Rehabil. 1997;  11 123-130
  • 23 Platz T. Evidence-based arm rehabilitation - a systematic review of the literature.  Nervenarzt. 2003;  74 841-849
  • 24 Powell J, Pandyan A D, Granat M, Cameron M, Stott D J. Electrical stimulation of wrist extensors in poststroke hemiplegia.  Stroke. 1999;  30 1384-1389
  • 25 Powell J, Pandyan A D, Granat M, Cameron M, Stott D J. Electrical stimulation of wrist extensors in poststroke hemiplegia.  Stroke. 1999;  30 1384-1389
  • 26 Reinkensmeyer D J, Kahn L E, Averbuch M, Kenna-Cole A, Schmit B D, Rymer W Z. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide.  J Rehabil Res Dev. 2000;  37 653-662
  • 27 Ryf C, Weymann A. Range of Motion - A0 Neutral-0 Method. Measurement and Documentation. Stuttgart, New York; Thieme 1999
  • 28 Schmidt R A, Wrisberg C A. Supplementing the learning experience. Schmidt RA, Wrisberg CA Motor Learning and Performance. A Problem-Based Learning Approach. Champaign; Human Kinetics 2004: 213-245
  • 29 Schumacher M, Schulgen G. Cross-Over Studien. Schumacher M, Schulgen G Methodik klinischer Studien. Methodische Grundlagen der Planung, Durchführung und Auswertung. Berlin, Heidelberg, New York; Springer 2002: 277-289
  • 30 Seitz R J, Butefisch C M, Kleiser R, Homberg V. Reorganisation of cerebral circuits in human ischemic brain disease.  Restor Neurol Neurosci. 2004;  22 207-229
  • 31 Shumway-Cook A, Woollacott M H. Mobility function. Shumway-Cook A, Woollacott MH Motor Control. Theory and Practical Applications. Philadelphia, Baltimore, New York; Lippincott Williams & Wilkins 2001: 305-337
  • 32 Taub E, Miller N E, Novack T A, Cook E WIII, Fleming W C, Nepomuceno C S, Connell J S, Crago J E. Technique to improve chronic motor deficit after stroke.  Arch Phys Med Rehabil. 1993;  74 347-354
  • 33 Van Peppen R P, Kwakkel G, Wood-Dauphinee S, Hendriks H J, Van der Wees P J, Dekker J. The impact of physical therapy on functional outcomes after stroke: what's the evidence?.  Clin Rehabil. 2004;  18 833-862
  • 34 Volpe B T, Ferraro M, Lynch D, Christos P, Krol J, Trudell C, Krebs H I, Hogan N. Robotics and other devices in the treatment of patients recovering from stroke.  Curr Atheroscler Rep. 2004;  6 314-319
  • 35 Wagenaar R C, Meijer O G. Effects of stroke rehabilitation (1).  J Rehabil Sci. 1991;  4 61-73
  • 36 Winstein C J, Gardner E R, McNeal D R, Barto P S, Nicholson D E. Standing balance training: effect on balance and locomotion in hemiparetic adults.  Arch Phys Med Rehabil. 1989;  70 755-762

Mag. phil. Andreas Mayr

Landeskrankenhaus Hochzirl

Abteilung für Neurologische Akutbehandlung

Hochzirl 1

6170 Zirl

Österreich

Email: andreas.mayr@tilak.at

    >