Int J Sports Med 2008; 29(9): 713-718
DOI: 10.1055/s-2007-989417
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Infrared Tympanic Thermometry in a Hot Environment

J. D. Coso1 , R. Aguado-Jimenez1 , R. Mora-Rodriguez1
  • 1Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha, Toledo, Spain
Further Information

Publication History

accepted after revision November 1, 2007

Publication Date:
22 January 2008 (online)

Abstract

The purpose of this study was to compare tympanic (measured by infrared thermometry; Tty-IRED) with rectal and esophageal temperatures (TREC and TES) during exercise in the heat. During Experiment 1, nine subjects pedaled for 55 min in a hot-dry environment (37 °C; 27 % humidity) in still-air (< 0.2 m/s) and for 10 additional min using water ingestion, wind and ice to cool them down. During Experiment 2, subjects pedaled for 90 min in a similar environment but with airflow at 2.5 m/s. Pearson correlation coefficients (r) and Bland-Altman plots were calculated. In Experiment 1, Tty-IRED and TREC were highly correlated (r = 0.83; p < 0.001) with close agreement (− 0.08 ± 0.4 °C). Overall Tty-IRED was significantly correlated with TES (r = 0.91; p < 0.001). Cold water ingestion did not affect Tty-IRED or TREC but lowered TES. Wind and ice application lowered Tty-IRED below TREC (p < 0.05). During Experiment 2, Tty-IRED was lower than TREC (p < 0.05) and the difference increased throughout exercise as hyperthermia developed resulting in low agreement (− 1.01 ± 1.1 °C). In conclusion, Tty-IRED dangerously underestimates TREC when exercising in a hot environment with airflow or during a cooling treatment. However, it could correctly detect hyperthermia during exercise in a hot still-air environment.

References

  • 1 Adner M M, Scarlet J J, Casey J, Robinson W, Jones B H. The Boston Marathon medical care team: ten years of experience.  Physician Sports Med. 1988;  16 99-108
  • 2 Aikas E, Karvonen M, Piironen P, Rvosteenoja R. Intramuscular, rectal and oesophageal temperature during exercise.  Acta Physiol Scand. 1962;  54 366-370
  • 3 Amoateng-Adjepong Y, Del Mundo J, Manthous C. Accurracy of an infrared tympanic thermometer.  Chest. 1999;  115 1002-1005
  • 4 Baker M A, Stocking R A, Meehan J P. Thermal relationship between tympanic membrane and hypothalamus in conscious cats and monkeys.  J Appl Physiol. 1972;  32 739-742
  • 5 Binkley H M, Beckett J, Casa D J, Kleiner D M, Plummer P E. National Athletic Trainers' Association position statement: exertional heat illnesses.  J Athl Train. 2002;  37 329-343
  • 6 Bland J, Altman D. Statistical method for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 7 Briner W. Tympanic membrane vs. rectal temperature. Measurements in marathon runners.  J Am Med Assoc. 1996;  276 194-195
  • 8 Brinnel H, Cabanac M. Tympanic temperature is a core temperature in humans.  J Therm Biol. 1989;  14 47-53
  • 9 Cabanac M. Selective brain cooling in humans: “fancy” or fact?.  FASEB J. 1993;  7 1143-1147
  • 10 Deschamps A, Levy R D, Cosio M G, Marliss E B, Magder S. Tympanic temperature should not be used to assess exercise induced hyperthermia.  Clin J Sport Med. 1992;  2 27-32
  • 11 Hamada S, Torii M, Szygula Z, Adachi K. Effect of partial body cooling on thermophysiological responses during cycling work in a hot environment.  J Therm Biol. 2006;  31 194-207
  • 12 Hansen R D, Daley W H, Leelarthaepin B. The effect of facial airflow on the estimation of exercise core temperature by infrared tympanic thermometry.  Aust J Sci Med Sport. 1993;  25 26-31
  • 13 Hansen R D, Olds T S, Richards D A, Richards C R, Leelarthaepin B. Infrared thermometry in the diagnosis and treatment of heat exhaustion.  Int J Sports Med. 1996;  17 66-70
  • 14 Kolka M A, Quigley M D, Blanchard L A, Toyota A, Stephenson L A. Validation of a temperature telemetry system during moderate and strenuous exercise.  J Therm Biol. 1993;  18 203-210
  • 15 Mitchell J, Nadel E, Stolwijk J. Respiratory weight losses during exercise.  J Appl Physiol. 1972;  32 474-476
  • 16 Moran D, Mendal L. Core temperature measurement: methods and current insights.  Sports Med. 2002;  32 879-885
  • 17 Newsham K, Saunders J, Nordin E. Comparison of rectal and tympanic thermometry during exercise.  South Med J. 2002;  95 804-810
  • 18 Nielsen B. Natural cooling of the brain during outdoor bicycling?.  Pflugers Arch. 1988;  411 456-461
  • 19 Nybo L, Secher N H, Nielsen B. Inadequate heat release from the human brain during prolonged exercise with hyperthermia.  J Physiol Lond. 2002;  545 697-704
  • 20 O'Brien C R, Hoyt R W, Buller J, Castellani J W, Young A J. Telemetry pill measurement of core temperature in humans during active heating and cooling.  Med Sci Sports Exerc. 1998;  30 468-472
  • 21 Ramanathan N. A new weighting system for mean surface temperature of the human body.  J Appl Physiol. 1964;  19 531-533
  • 22 Reilly T, Brooks G A. Exercise and the circadian variation in body temperature measures.  Int J Sports Med. 1986;  7 358-362
  • 23 Saltin B, Hermansen L. Esophageal, rectal, and muscle temperature during exercise.  J Appl Physiol. 1966;  21 1757-1762
  • 24 Terndrup T. An appraisal of temperature assessment by infrared emission detection tympanic thermometry.  Ann Emerg Med. 1992;  21 1483-1492
  • 25 Terndrup T, Crofton D, Mortelliti A, Kelley R, Rajk J. Estimation of contact tympanic membrane temperature with a noncontact infrared thermometer.  Ann Emerg Med. 1997;  30 171-175

Ricardo Mora

Universidad de Castilla-La Mancha
Facultad de Ciencias del Deporte

Avda. Carlos III s/n

45071 Toledo

Spain

Phone: 55 15

Fax: + 34 9 25 26 88 46

Email: Ricardo.Mora@uclm.es

    >