Semin Musculoskelet Radiol 2007; 11(1): 003-015
DOI: 10.1055/s-2007-984411
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

Musculoskeletal Neoplasia: Helping the Orthopaedic Surgeon Establish the Diagnosis

Theodore W. Parsons1 , 2 , 3 , 4  III , Spencer J. Frink5 , Scot E. Campbell6
  • 1Associate Professor of Orthopaedic Surgery, Uniformed Services University of the Health Sciences, San Antonio, Texas
  • 2Clinical Associate Professor of Orthopaedics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
  • 3Dean for Graduate Medical Education, San Antonio Uniformed Services Health Education Consortion, San Antonio, Texas
  • 4Chief, Orthopaedic Oncology Service, Wilford Hall Medical Center, San Antonio, Texas
  • 5Orthopaedic Oncology Service, Wilford Hall Medical Center, San Antonio, Texas
  • 6Chief, Musculoskeletal Imaging, Wilford Hall Medical Center, San Antonio, Texas
Further Information

Publication History

Publication Date:
31 July 2007 (online)

ABSTRACT

Encountering musculoskeletal neoplasia in the clinical practice of orthopaedic surgery is a rather uncommon event but can be an anxiety-provoking experience when it occurs. Using a systematic approach to imaging these lesions includes evaluation via plain radiographs and other modalities such as bone scintigraphy (BS), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). By applying specific imaging characteristics obtained from these different modalities, the radiologist and orthopaedic surgeon can jointly create an appropriate differential diagnosis. The radiologist plays a key role as part of the diagnostic team, including providing crucial support for biopsy and staging. This article discusses a systematic approach in the evaluation and staging of musculoskeletal neoplasia from the perspective of supporting the orthopaedic surgeon.

REFERENCES

  • 1 Parsons III T W, Filzen T W. Evaluation and staging of musculoskeletal neoplasia.  Hand Clin. 2004;  20 137-145
  • 2 Peabody T D, Gibbs Jr C P, Simon M A. Current concepts review: evaluation and staging of musculoskeletal neoplasms.  J Bone Joint Surg Am. 1998;  80 1204-1218
  • 3 Sanders T G, Parsons III T W. Radiographic imaging of musculoskeletal neoplasia.  Cancer Control. 2001;  8 221-231
  • 4 Lodwick G S, Wilson A J, Farrell C, Virtama P, Dittrich F. Determining growth rates of focal bone lesions from radiographs.  Radiology. 1980;  134 577-583
  • 5 Bataille R, Chevalier J, Rossi M, Sany J. Bone scintigraphy in plasma-cell myeloma: a prospective study of 70 patients.  Radiology. 1982;  145 801-804
  • 6 Otsuka N, Fukunaga M, Morita K, Ono S, Nagai K. Photon-deficient finding in sternum on bone scintigraphy in patients with malignant disease.  Radiat Med. 1990;  8 168-172
  • 7 Gilday D L, Ash J M. Benign bone tumors.  Semin Nucl Med. 1976;  6 33-46
  • 8 Mankin H J. Chondrosarcoma of bone. In: Menendez LR Orthopaedic Knowledge Update: Musculoskeletal Tumors. Rosemont, IL; American Academy of Orthopaedic Surgeons 2002: 187-194
  • 9 Assoun J, Richardi G, Railhac J J et al.. Osteoid osteoma: MR imaging versus CT.  Radiology. 1994;  191 217-223
  • 10 Hosalkar H S, Sumeet G, Moroz L, Pollock A, Dormans J P. The diagnostic accuracy of MRI versus CT imaging for osteoid osteoma in children.  Clin Orthop Relat Res. 2005;  433 171-177
  • 11 Tehranzadeh J, Mnaymneh W, Ghavam C, Morillo G, Murphy B J. Comparison of CT and MR imaging in musculoskeletal neoplasms.  J Comput Assist Tomogr. 1989;  13 466-472
  • 12 Imhof H, Mang T. Advances in musculoskeletal radiology: multidetector computed tomography.  Orthop Clin North Am. 2006;  37 287-298
  • 13 Dupuy D E, Rosenberg A E, Punyaratabundhu T, Tan M H, Mankin H J. Accuracy of CT-guided needle biopsy of musculoskeletal neoplasms.  AJR Am J Roentgenol. 1998;  171 759-762
  • 14 Cheng E Y, Thompson R C. New developments in the staging and imaging of soft-tissue sarcomas.  Instr Course Lect. 2000;  49 443-451
  • 15 Bonneville F, Cattin F, Marsot-Dupuch K, Dormont D, Bonneville J F, Chiras J. T1 signal hyperintensity in the sellar region: spectrum of findings.  Radiographics. 2006;  26 93-113
  • 16 de Kerviler E, Cuenod C A, Clement O, Halimi P, Frija G, Frija J. What is bright on T1 MRI scans?.  J Radiol. 1998;  79 117-126
  • 17 Bangert B A, Modic M T, Ross J S et al.. Hyperintense disks on T1-weighted MR images: correlation with calcification.  Radiology. 1995;  195 437-443
  • 18 Spiller M, Tenner M S, Couldwell W T. Effect of absorbable topical hemostatic agents on the relaxation time of blood: an in vitro study with implications for postoperative magnetic resonance imaging.  J Neurosurg. 2001;  95 687-693
  • 19 Gissel H, Despa F, Collins J et al.. Magnetic resonance imaging of changes in muscle tissues after membrane trauma.  Ann NY Acad Sci. 2005;  1066 272-285
  • 20 Gambarota G, Cairns B E, Berde C B, Mulkern R V. Osmotic effects on the T2 relaxation decay of in vivo muscle.  Magn Reson Med. 2001;  46 592-599
  • 21 Nissi M J, Toyras J, Laasanen M S et al.. Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage.  J Orthop Res. 2004;  22 557-564
  • 22 Antoniou J, Pike G B, Steffen T et al.. Quantitative magnetic resonance imaging in the assessment of degenerative disc disease.  Magn Reson Med. 1998;  40 900-907
  • 23 Van Dyck P, Vanhoenacker F M, Vogel J et al.. Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors.  Eur Radiol. 2006;  16 2644-2651
  • 24 May D A, Good R B, Smith D K et al.. MR imaging of musculoskeletal tumors and tumor mimickers with intravenous gadolinium: experience with 242 patients.  Skeletal Radiol. 1997;  26 2-15
  • 25 Tsushima Y, Endo K. Hypointensities in the brain on T2*-weighted gradient-echo magnetic resonance imaging.  Curr Probl Diagn Radiol. 2006;  35 140-150
  • 26 Eckhardt B P, Hernandez R J. Pigmented villonodular synovitis: MR imaging in pediatric patients.  Pediatr Radiol. 2004;  34 943-947
  • 27 Rand T, Trattnig S, Male C et al.. Magnetic resonance imaging in hemophilic children: value of gradient echo and contrast-enhanced imaging.  Magn Reson Imaging. 1999;  17 199-205
  • 28 Vande Berg B C, Malghem J, Lecouvet F E, Maldague B. Classification and detection of bone marrow lesions with magnetic resonance imaging.  Skeletal Radiol. 1998;  27 529-545
  • 29 Petren-Mallmin M. Clinical and experimental imaging of breast cancer metastases in the spine.  Acta Radiol Suppl. 1994;  391 1-23
  • 30 Ruzal-Shapiro C, Berdon W E, Cohen M D, Abramson S J. MR imaging of diffuse bone marrow replacement in pediatric patients with cancer.  Radiology. 1991;  181 587-589
  • 31 Takagi S, Tanaka O, Miura Y. Magnetic resonance imaging of femoral marrow in patients with myelodysplastic syndromes or leukemia.  Blood. 1995;  86 316-322
  • 32 Baur-Melnyk A, Buhmann S, Durr H R, Reiser M. Role of MRI for the diagnosis and prognosis of multiple myeloma.  Eur J Radiol. 2005;  55 56-63
  • 33 Walde T A, Weiland D E, Leung S B et al.. Comparison of CT, MRI, and radiographs in assessing pelvic osteolysis: a cadaveric study.  Clin Orthop Relat Res. 2005;  (437) 138-144
  • 34 Sofka C M, Potter H G, Figgie M, Laskin R. Magnetic resonance imaging of total knee arthroplasty.  Clin Orthop Relat Res. 2003;  (406) 129-135
  • 35 Kolind S H, MacKay A L, Munk P L, Xiang Q S. Quantitative evaluation of metal artifact reduction techniques.  J Magn Reson Imaging. 2004;  20 487-495
  • 36 Hodler J, Yu J S, Steinert H C, Resnick D. MR imaging versus alternative imaging techniques.  Magn Reson Imaging Clin N Am. 1995;  3 591-608
  • 37 Hosalkar H S, Garg S, Moroz L, Pollack A, Dormans J P. The diagnostic accuracy of MRI versus CT imaging for osteoid osteoma in children.  Clin Orthop Relat Res. 2005;  (433) 171-177
  • 38 Hicks R J, Toner G C, Choong P F. Clinical applications of molecular imaging in sarcoma evaluation.  Cancer Imaging. 2005;  5 66-72
  • 39 Townsend D W, Beyer T, Blodgett T M. PET/CT scanners: a hardware approach to image fusion.  Semin Nucl Med. 2003;  33 193-204
  • 40 Messa C, Landoni C, Pozzato C, Fazio F. Is there a role for FDG PET in the diagnosis of musculoskeletal neoplasms?.  J Nucl Med. 2000;  41 1702-1703
  • 41 Adler L P, Blair H F, Makley J T et al.. Noninvasive grading of musculoskeletal tumors using PET.  J Nucl Med. 1991;  32 1508-1512
  • 42 Kern K A, Brunetti A, Norton J A. Metabolic imaging of human extremity musculoskeletal tumors.  J Nucl Med. 1988;  29 181-186
  • 43 Aoki J, Endo K, Watanabe H et al.. FDG-PET for evaluating musculoskeletal tumors: a review.  J Orthop Sci. 2003;  8 435-441
  • 44 Bastiaannet E, Groen H, Jager P L et al.. The value of FDG-PET in the detection, grading and response to therapy of bone and soft tissue sarcomas: a systematic review and meta-analysis.  Cancer Treat Rev. 2004;  30 83-101
  • 45 Schulte M, Brecht-Kraus D, Heymer B et al.. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET.  J Nucl Med. 2000;  41 1695-1701
  • 46 Aoki J, Watanabe H, Shinozaki T et al.. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions.  Radiology. 2001;  219 774-777
  • 47 Bredella M A, Caputo G R, Steinbach L S. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas.  AJR Am J Roentgenol. 2002;  179 1145-1150
  • 48 Hawkins D S, Rajendran J G, Conrad E U, Bruckner J D, Eary J F. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography.  Cancer. 2002;  94 3277-3284
  • 49 Schulte M, Brecht-Krauss D, Werner M et al.. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET.  J Nucl Med. 1999;  40 1637-1643
  • 50 Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis.  Clin Nucl Med. 2000;  25 874-881
  • 51 Peterson J J, Kransdorf M J, O'Connor M I. Diagnosis of occult bone metastases: positron emission tomography.  Clin Orthop Relat Res. 2003;  (415 suppl) S120-S128
  • 52 Kneisl J S, Patt J C, Johnson J C, Zuger J H. Is PET useful in detecting occult nonpulmonary metastases in pediatric bone sarcomas?.  Clin Orthop Relat Res. 2006;  450 101-104
  • 53 Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases.  Semin Nucl Med. 2005;  35 135-142
  • 54 Iagaru A, Chawla S, Menedez L, Conti P S. 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas.  Nucl Med Commun. 2006;  27 795-802
  • 55 Mankin H J, Mankin C J, Simon M A. The hazards of the biopsy, revisited. Members of the Musculoskeletal Tumor Society.  J Bone Joint Surg Am. 1996;  78 656-663
  • 56 Enneking W F, Spanier S S, Goodman M A. A system for the surgical staging of musculoskeletal sarcoma.  Clin Orthop Relat Res. 1980;  (153) 106-120
  • 57 Green F L, Page D L, Fleming I D et al.. Bone. In: Green FL, American Joint Committee on Cancer, American Cancer Society AJCC Cancer Staging Handbook. 6th ed. New York; Springer-Verlag 2002: 221-225

Theodore W Parsons IIIM.D. F.A.C.S. 

Dean for Graduate Medical Education, Wilford Hall Medical Center

2200 Bergquist Drive, Lackland AFB, TX 78236

    >